NUMERICAL METHODS FOR FLUID-STRUCTURE INTERACTION 1500

BERNHARD MÜLLER * AND TORE FLÅTTEN †

* Department of Energy and Process Engineering Norwegian University of Science and Technology (NTNU) Kolbjørn Hejes vei 2, NO-7491 Trondheim, Norway bernhard.muller@ntnu.no http://folk.ntnu.no/bmuller/

[†] Department of Energy and Petroleum Engineering University of Stavanger NO-4036 Stavanger, Norway tore.h.flatten@uis.no

https://www.uis.no/article.php?articleID=130303&categoryID=11198

Key words: Cut-cell methods, direct numerical simulation, turbulent flow, multiphase flow, immersed boundary method, quasi-Newton method.

ABSTRACT

In this minisymposium, we will provide a forum for discussing both discretization methods and coupling techniques for fluid-structure interaction. In this respect, we will consider both heat transfer and mechanical interactions. Topics addressed by the presentations will include:

- Cut-cell methods for the compressible and incompressible Navier-Stokes equations on collocated and staggered grids;
- Direct numerical simulation of the interaction of turbulent compressible flow with particles of Kolmogorov-length-scale size;
- Adaptive mesh refinement;
- Novel Runge-Kutta methods;
- Volume of fluid and level set methods;
- High order immersed boundary methods;
- Explicit fluid-structure coupling via kinematic and traction boundary conditions;
- Novel fluid-structure coupling of black box solvers and analytical models via the quasi Newton method.

REFERENCES

[1] Schneiders, L., Meinke, M., and Schröder, W. (2017). Direct particle—fluid simulation of Kolmogorov-length-scale size particles in decaying isotropic turbulence. *Journal of Fluid Mechanics*, 819, 188-227. https://doi.org/10.1017/jfm.2017.171