ADJOINT METHODS FOR MULTI-PHYSICS, INCLUDING APPLICATIONS

1300

M. MEHEUT^{*}, S. SHAHPAR[†] AND K. GIANNAKOGLOU[§]

* ONERA - The French Aerospace Lab Meudon, F-92140, France michael.meheut@onera.fr

† Rolls-Royce plc. Derby, DE24 8BJ. U.K Shahrokh.Shahpar@rolls-royce.com

§Parallel CFD & Optimization Unit, School of Mechanical Engineering National Technical University of Athens, Greece kgianna@central.ntua.gr

Key words: Multidisciplinary Optimization, adjoint method, Computational Fluid Dynamics

ABSTRACT

The proposed symposium is dedicated to the development, validation and applications of multidisciplinary adjoint-based optimization methods. Until today, adjoint-based methods were mainly used in industry for pure aerodynamic design. In order to meet in a near future, the industrial objectives in terms of competitiveness and environmental impact, multidisciplinary aspects and couplings will become key design drivers, among other, for aircraft and engine manufacturers.

The aim of this symposium is to present the progresses made on multi-disciplinary adjoint based optimization ranging from academic developments up to industrial and complex applications. In this symposium, several partners of the European MADELEINE project [1] will present their most relevant results after 2 years of work but the objective is also to have other contributions from European or international universities, research centres, SMEs and industrial companies among the 'adjoint community'.

Due to the multi-disciplinary nature of the subject, contributions from sectors other than aeronautics are also expected (car, and energy industries for instance).

REFERENCES

[1] https://www.madeleine-project.eu/