EFFICIENT METHODS FOR MULTI-DISCIPLINARY OPTIMISATION, PROBABILISTIC DESIGN AND OPTIMISATION UNDER UNCERTAINTY

TRACK NUMBER:1300

JENS-DOMINIK MÜLLER * , MARCUS MEYER † AND TOM VERSTRAETE ‡

* Queen Mary University of London Mile End Road, London, E1 4NS, UK <u>j.mueller@qmul.ac.uk</u>

† Rolls Royce Deutschland Dahlewitz, DE Marcus.Meyer@Rolls-Royce.com

[‡] Von Karman Institute Waterloosesteenweg 72, B-1640 Sint-Genesius-Rode, Belgium tom.verstraete@vki.ac.be

Key words: Shape Optimisation, Gradient-based methods, Uncertainty Quantification, Multi-disciplinary design.

ABSTRACT

Shape optimisation has become an integral part in engineering design of high-performance components such as turbomachinery blades, aircraft wings or external road vehicle aerodynamics. The significant advances over the past decade with the effectiveness and robustness of gradient-based optimisation, adjoint methods and gradient-enable shape parametrisation has allowed to conceive industrial workflows that integrate these approaches.

This minisymposium brings together presentations on recent advances that extend efficient optimisation approaches to a wider range of physical problems. It will also cover progress with optimisation taking into account uncertain parameters arising from a range of sources.

In particular contributions are invited on

- adjoint-based shape optimisation for multi-disciplinary systems,
- error analysis and goal-based model adaptation
- Adjoint methods in uncertainty quantification
- Probabilistic design, robust design, design under uncertainty.

The symposium will have a particular focus on efficient approaches that are able to scale to large scale cases and industrial application.