MULTIPHYSICS AND MULTISCALE MODELLING FOR INDUSTRIAL APPLICATIONS

1200 – MODELLING AND ANALYSIS OF REAL WORLD AND INDUSTRY APPLICATIONS

T. SAYET*, A. GASSER*, E. BLOND*, S. SINNEMA†

* Univ of Orleans, Univ. of Tours, INSA CVL Laboratoy of mechanics Gabriel Lamé Polytech Orléans, 8 rue Léonard de Vinci, 45072 Orléans, France Thomas.sayet@univ-orleans.fr

[†] Tata Steel Ijmuiden Wenckebachstraat 1, 1951 JZ Velsen-Noord, Pays-Bas Sido.sinnema@tatasteeleurope.com

Key words: Multiphysics, Multiscale, Modelling, coupling, finite element analysis, industrial applications.

ABSTRACT

This minisymposium is dedicated to a wide field of scientists who work on multiphysics and multiscale analysis. Techniques and applications used in the modelling of complex problems help researchers in the understanding of several physical behaviour and phenomenon that appear in industrial applications where mechanics, thermal, chemistry and many other science take place.

The proposed minisymposium is meant to provide an opportunity to exchange on the methods used to treat such analysis. Dialogue between experts in numerical simulation techniques and industrial applications communities should be profitable for the understanding of complex coupled simulations and the emergence of their application in the industrial field.

With these aims in mind, contributions from all aspects of engineering applications, with particular attention to structural engineering applications, will be considered. Topics of applications will include (but not be limited to):

- Recent advances in thermo-chemo-mechanical modelling for refractory materials for steel making.
- Recent advances in thermo-metallic-mechanical modelling for stir welding, friction stir spot welding and welding process.
- Heterogeneous materials with coupled multiphysics behaviour (phase change, chemo-mechanics, nonlinear thermo-mechanics...) including extended homogeneization schemes.
- Multiscale Modeling in Solids and Structures: Coupling Methods from Micro to Macro scales.