HIGH-ACCURACY FINITE-VOLUME METHODS ON UNSTRUCTURED MESHES FOR AVIATION APPLICATIONS

TRACK NUMBER 700

FREDERIC ALAUZET*, ALAIN DERVIEUX†, ADRIEN LOSEILLE*, AND TATIANA KOZUBSKAYA‡

* INRIA Saclay Ile-de-France 1, rue Honoré d'Estienne d'Orves, 91126 Palaiseau, France E-mail: frederic.alauzet@inria.fr, adrien.loseille@inria.fr

> † Societe Lemma 06410 Biot, France E-mail: alain.dervieux@inria.fr

[‡] Keldysh Institute of Applied Mathematics 4, Miusskaya Sq., 125047 Moscow, Russia E-mail: kozubskaya@imamod.ru

Key words: Computational Fluid Dynamics, Finite-Volume Schemes, High-Accuracy Methods, Shock Capturing, LES-based Models, Immersed Boundary Method, Implicit Time Advancing, Dynamic Mesh Adaptation

ABSTRACT

In the era of tremendous advance of Discontinuous Galerkin, the idea is to assess the existing higher-accuracy finite-volume (FV) based methods for unstructured meshes and their capacity in applied aerodynamics and aeroacoustics problems. Within the huge family of FV methods, we will focus on the most accurate algorithms, in particular the methods using high-order quasi-1D reconstructions [1]-[2] and k-exact polynomial schemes [3]-[4].

The FV-schemes modifications and specific implementations needed in aviation and other industrial applications concerning unsteady turbulent flows in complex moving geometries will be comprehensively discussed. First of all, the progress in shock capturing techniques will be evaluated. The dynamic mesh adaptation will be analysed as a means to improve accuracy. The scope of topics will also include scale-resolving LES-based models, immersed boundary methods, efficient time advancing (mainly implicit and multirate schemes), sliding meshes, and their massively parallel versions.

Predictions of complex turbulent flows performed using the developed highly accurate FV methods will be welcome.

REFERENCES

- [1] Koobus B., Alauzet F., Dervieux A., *Computational Fluid Dynamics*, Ed. by Magoules F., CRC Press, pp. 131–204, (2011).
- [2] Abalakin I., Bakhvalov P., Kozubskaya T., Edge-based reconstruction schemes for unstructured tetrahedral meshes, *Int. Journal for Num. Meth. in Fluids*, Vol. **81**(6), pp. 331–356, (2016).
- [3] Dumbser M, Kaser M, Titarev VA, Toro EF. Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems, *Journal of Computational Physics*, Vol. **226**, pp. 204–243, (2007)
- [4] Tsoutsanis P, Titarev VA, Drikakis D. WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions, *Journal of Computational Physics*, Vol. **230**, pp. 1585–1601, (2011).