HIGH-PERFORMANCE AND INTELLIGENT COMPUTING FOR REAL WORLD'S ENERGY SYSTEMS

TRACK NUMBER (1200)

SHINOBU YOSHIMURA * , TOMONORI YAMADA * , RYOICHI KUROSE † , AKIYOSHI IIDA $^\#$

* The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan yoshi@sys.t.u-tokyo.ac.jp, tyamada@sys.t.u-tokyo.ac.jp

[†] Kyoto University Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan kurose@mech.kyoto-u.ac.jp

Toyohashi University of Technology
1-1 Hibarigaoka, Tempakucho, Toyohashi, Aichi 441-8580, Japan iida@me.tut.ac.jp

Key words: HPC, FEM, FVM, Meshless Methods, Multiscale and Multiphysics Simulations, AI, Energy Systems.

ABSTRACT

Any source of energy that is superior in all aspects—cost, environmental impact, safety, and use of natural resources—does not exist. Therefore various types of energy systems including clean energy systems have been developed worldwide. To accelerate the development of such energy systems, advanced computer simulations are strongly expected to play a key role. However, core physics in such systems are very complex and tend to be multi-scale and multi-physics of fluid, thermal, solid, electromagnetics and so on. Therefore various types of simulation technology such as FEM, FDM, FVM, meshfree methods, particle methods and so on have been developed and applied. In addition, recently, petascale and exascale computing technology targets such computational mechanics simulations of various types of energy systems, such as carbon-free coal gasification plants, low-cost, long-lasting fuel cells, large-scale wind power plants farm floating along sea seashore, and nuclear fission / fusion power plants and others. In addition, recently various types AI technologies are going to open the door to a new era of computational mechanics. In this mini-symposium, focusing on high-performance and intelligent computing issues, we exchange ideas and information in order to advance computational mechanics for energy systems.