DATA-BASED ENGINEERING & COMPUTATIONS

TRACK NUMBER (700/1200/1700)

F. CHINESTA * , E. CUETO † , C. FARHAT $^\bullet$, P. LADEVEZE * , AND F. J. MONTÁNS $^\Diamond$

* ENSAM ParisTech 155, Bvd. de l'Hôpital, 75013 Paris, France Francisco.chinesta@ensam.eu

> † Universidad de Zaragoza María de Luna, 1 ecueto@unizar.es

*Stanford University
W. F. Durand Bdng. 496 Lomita Mall
Stanford, CA, USA
cfarhat@satnford.edu

#L.M.T. Cachan 65 Av. President Wilson 94235 Cachan, France ladeveze@lmt.ens-cachan.fr

E.T.S. Ing. Aeronáutica y del Espacio Universidad Politécnica de Madrid Pza. Cardenal Cisneros, 3 Madrid, Spain Fco.montans@upm.es

Key words: Data-driven computational mechanics, big data, equation-free.

ABSTRACT

Engineering is evolving in the same way as society. Nowadays, data is earning a prominence never imagined before. In the past, in the domain of materials, processes and structures, testing machines allowed the extraction of data, which served in turn to calibrate state-of-the-art computational models. Some calibration procedures were even integrated within testing machines. Thus, once the model was calibrated, computer simulation took place. However, data can offer much more than a simple state-of-the-art model calibration, and not only from its simple statistical analysis, but from the modeling and simulation viewpoints. This gives rise to the family of so-called digital twins, also known as virtual and hybrid twins. Moreover, not only data can serve to enrich physically-based models. These could allow us to perform a tremendous leap forward, by replacing big-data-based habits by the incipient smartdata paradigm.