ADVANCED MULTI-PHYSICS CFD SIMULATIONS IN SCIENCE AND ENGINEERING

600 - FLUID DYNAMICS AND TRANSPORT PHENOMENA

TAKAHIRO TSUKAHARA†, KAORU IWAMOTO‡, KOJI FUKAGATA*, MAMORU TANAHASHI§, NOBUYUKI OSHIMA¶, AND MAKOTO YAMAMOTO#

[†] Tokyo University of Science 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan tsuka@rs.tus.ac.jp and www.rs.tus.ac.jp/~t2lab/

[‡] Tokyo University of Agriculture and Technology 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan iwamotok@cc.tuat.ac.jp and iwamoto.lab.tuat.ac.jp/

* Keio University 3-14-1 Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa 223-8522, Japan fukagata@mech.keio.ac.jp and kflab.jp/

§ Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan mtanahas@mes.titech.ac.jp and www.navier.mes.titech.ac.jp/

¶ Hokkaido University Kita 13 Nishi 8, Kita-ku, Sapporo-shi, Hokkaido 060-0808, Japan oshima@eng.hokudai.ac.jp and www.eng.hokudai.ac.jp/labo/fluid/

Tokyo University of Science 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan yamamoto@rs.kagu.tus.ac.jp and www.rs.kagu.tus.ac.jp/~yamamoto/

Key words: Computational Fluid Dynamics, Combustion, Multiphase Flow, Multiscale Flow, Newtonian Fluid, Non-Newtonian Fluid, Turbulence, Data-Driven Surrogate Model.

ABSTRACT

This minisymposium covers any application of the state-of-the-art CFD (computational fluid dynamics) simulations for multi-physics problems in science and engineering. The topics of interest covers, but not limited to: reactive flows, multiphase/multiscale flows, Newtonian/non-Newtonian fluid flows, and turbulent flows. It serves as a forum to exchange ideas for the future development of this field. Emphasis will be on novel computational methods, leading-edge numerical simulations, and innovative attempts on applying deep machine learning. Recent advances in data-driven analytics and AI (artificial intelligence) push the boundaries of traditional disciplines including fluid science and engineering. Advanced CFD simulations in association with the machine learning may enable us to address new challenges to solve complex flow problems across both length and time scales as well as to achieve data-driven surrogate modelling that reduces computational load. Most welcome are contributions from students and young researchers working on computational fluid dynamics, concerned with unsolved or not yet fully satisfying solved problems and possible new attempts.