NUMERICAL METHODS FOR POLYGONAL AND POLYHEDRAL MESHES

700 - NUMERICAL METHODS AND ALGORITHMS IN SCIENCE AND ENGINEERING

D. A. DI PIETRO * , J. DRONIOU † AND G. MANZINI $^+$

* IMAG, Univ Montpellier, CNRS, Montpellier, France daniele.di-pietro@umontpellier.fr

† School of Mathematical Sciences, Monash University, Clayton, VIC 3800, AUSTRALIA <u>jerome.droniou@monash.edu</u>

⁺ T-5, Theoretical Division, Los Alamos National Laboratory 30, Bikini Atoll Rd, Los Alamos, 87547, New Mexico, USA gmanzini@lanl.gov

Key words: PDEs, polygonal and polyhedral meshes

ABSTRACT

The purpose of this minisymposium is to bring together researchers who develop and apply novel discretization technologies for partial differential equations supporting polygonal and polyhedral meshes. A few examples of such technologies are: continuous and discontinuous Galerkin methods (including their mass-lumped versions), structure-preserving mimetic discretizations, virtual element methods, finite element exterior calculus, hybrid high-order methods, and finite volume methods. The use of polygonal and polyhedral meshes with convex and concave elements provides greater flexibility in mesh design, and the discretizations on such meshes afford robustness in material design simulations, capturing flow in heterogeneous subsurface porous media, modeling of layered stratification of faults and fractures at geological sites, and approximation of equations or solutions with singularities via local mesh refinement. These technologies have given rise to many new opportunities in computational mechanics as well as new mathematical challenges. Contributions to this minisymposium are solicited that emphasize methods development, mathematical analysis and/or applications to problems in engineering sciences that involve the use of polygonal and polyhedral discretizations. While contributions in all aspects related to these methods are invited, some of the featured topics will include:

- o finite volumes; gradient discretization methods; methods based on generalized barycentric coordinates; methods with hybrid unknowns (HHO, HDG); discontinuous Galerkin methods; conforming/nonconforming/mixed virtual element methods; structure-preserving algorithms like mimetic schemes and methods based on the finite element exterior calculus;
- o use of polygonal/polyhedral meshes in applications such as flow simulations, material design and microstructural discretization, topology optimization and additive manufacturing, deformation of nonlinear continua, fracture modeling, and computer graphics and animations.

REFERENCES

- [1] F. Bassi, L. Botti, A. Colombo, D. A. Di Pietro, and P. Tesini, On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations, J. Comput. Phys., 2012, 231(1):45–65. https://dx.doi.org/10.1016/j.jcp.2011.08.018
- [2] L. Beirão da Veiga, K. Lipnikov, and G. Manzini. The mimetic finite difference method for elliptic problems. Vol. 11. MS&A. Modeling, Simulation and Applications. Springer, Cham, 2014, https://dx.doi.org/10.1007/978-3-319-02663-3
- [3] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, and A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci. (M3AS), 2013, 199(23):199—214, https://dx.doi.org/10.1142.80218202512500492
- [4] B. Cockburn, J. Gopalakrishnan, and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 2009, 47(2):1319—1365, https://dx.doi.org/10.1137/070706616
- [5] D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Vol. 69 Mathématiques & Applications, Springer—Verlag Berlin, 2012, https://dx.doi.org/10.1007/978-3-642-22980-0
- [6] D. A. Di Pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes, Comput. Meth. Appl. Mech. Engrg., 2015, 283:1–21. https://dx.doi.org/10.1016/j.cma.2014.09.009
- [7] J. Droniou, R. Eymard, A mixed finite volume scheme for anisotropic diffusion problems on any grid, Numer. Math., 2006, 105:35—71, https://dx.doi.org/10.1007/s00211-006-0034-1
- [8] J. Droniou, R. Eymard, T. Gallouët, C. Guichard, and R. Herbin, The gradient discretisation method, Vol. 82 Mathématiques & Applications, Springer, 2018, https://dx.doi.org/10.1007/978-3-319-79042-8
- [9] J. Droniou, R. Eymard, T. Gallouët, R. Herbin, A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods, Math. Models Methods Appl. Sci. (M3AS), 2010, 20(2):1—31, https://dx.doi.org/10.1142/S0218202510004222
- [10] K. Lipnikov and G. Manzini, A high-order mimetic method on unstructured polyhedral meshes for the diffusion equation, J. Comput. Phys., 2014, 211(2):473—491, https://doi.org/10.1016/j.jcp.2014.04.021