RECENT ADVANCES IN PHASE-FIELD MODELING AND SIMULATIONS

300 (MULTISCALE AND MULTIPHYSICS SYSTEMS)

TOMOHIRO TAKAKI * , JOHANNES HÖTZER † TOSHIYUKI KOYAMA †† , NAOKI TAKADA ††† , MUNEKAZU OHNO †††† , AND YUHKI TSUKADA ††

* Kyoto Institute of Technology Matsugasaki Sakyo-ku Kyoto 606-8585, Japan takaki@kit.ac.jp

† Karlsruhe Institute of Technology Straße Am Forum 7, 76131, Karlsruhe, Germany johannes.hoetzer@kit.edu

†† Nagoya University Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan koyama.toshiyuki@material.nagoya-u.ac.jp, tsukada.yuhki@material.nagoya-u.ac.jp

††† National Institute of Advanced Industrial Science and Technology 1-2-1 Namiki, Tsukuba-shi, Ibaraki 305-8564, Japan naoki-takada@aist.go.jp

†††† Hokkaido University Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan mohno@eng.hokudai.ac.jp

Key words: Phase-field method, Computational material science, Multiphase flow, Multiscale and multiphysics problem.

ABSTRACT

The phase-field method has emerged as the most powerful numerical tool to simulate material microstructure evolutions in the mesoscopic scale, and is now widely used to express the complicated morphological changes in multiphysics and multiscale problems. This minisymposium focuses on the recent advances in phase-field modelling and simulations in various fields, such as multiphase flow, topology optimization, crack propagation, biomechanics as well as material science. We welcome you to submit your abstracts to this mini-symposium.