Effects of vegetation on slope stability - understanding mechanical and hydrological reinforcement at different scales

A. Glyn Bengough*1,2, David Boldrin1,2, Paul D Hallett3, Jonathan A. Knappett4, Teng Liang1, Anthony K. Leung1, Kenneth W. Loades2, Gerrit J. Meijer1, David Muir Wood1, Bruce C. Nicoll3

*1School of Science and Engineering, University of Dundee, Dundee DD1 4HN
2Ecological Sciences Group, The James Hutton Institute, Dundee DD2 5DA
3School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU
4The Hong Kong University of Science and Technology, Hong Kong
5Forest Research, Northern Research Station, Roslin, Midlothian EH25 9SY

E-mail: a.bengough@dundee.ac.uk

ABSTRACT

Vegetation can reinforce soil slopes through both direct mechanical reinforcement and hydrological reinforcement, as plants generate suctions that increase effective stress between soil particles. We have studied relevant mechanical and hydrological processes at a range of scales: measuring the mechanical properties of individual plant roots [5]; the reinforcement that roots offer to intact soil cores [4]; the reinforcement of scaled model slopes within a geotechnical centrifuge subject to simulated rainfall events [4, 8]; and the monitoring of both mechanical [6, 7] and hydrological [1, 2] reinforcement of field-scale slopes. The effects of plant roots on changing soil structure and hydrology with time will also be considered [3].

This talk will consider what we can learn from experiments and modelling at each scale, and where significant gaps still exist in our understanding. The potential to improve slope management by appropriate choice of species and management regime will be discussed, together with problems that may be caused when vegetation is removed and not replanted promptly.

REFERENCES


