Shape optimization of robotically fabricated structures taking into account manufacturability constraints.

Tobias Barbier*, Andrew Vande Moere, Mattias Schevenels

KU Leuven, Faculty of Engineering Science, Department of Architecture
Kasteelpark Arenberg 1 box 2431, 3001 Leuven
*tobias.barbier@kuleuven.be

Abstract
This study focuses on minimum compliance shape optimization of small-scale truss structures which are produced using freeform 3D printing. We developed a method to take into account the limitations of freeform 3D printing during the optimization process, to guarantee that the optimized designs are manufacturable, regardless of their possibly complex geometry.

The optimization problem is formulated as follows:

\[
\begin{align*}
\min_{x} & \quad C(x) \\
\text{s.t.} & \quad g_j(x, \theta(x)) \leq 0 \\
\theta(x) & \equiv \arg\min_{\theta} \sum_j g_j(x, \theta)
\end{align*}
\]

The optimization problem consists of two nested optimization loops. The external loop varies the design variables \(x\) in order to find the lowest possible compliance \(C\), while satisfying the fabrication constraints. These constraints are represented by the functions \(g_j\), obtaining a value of zero if no fabrication errors occur, and a positive non-zero value proportional to the severity of the error if an error occurs. An internal optimization loop searches the values of the robotic fabrication variables \(\theta\) for which the sum of all fabrication constraints \(g_j\) is minimal. In order to reduce the computation time, the fabrication constraints \(g_j\) are evaluated in advance for all possible values of \(x\) and \(\theta\). This results in a manufacturability map that follows the concept of machinic morphospaces, as developed by Menges [1]. A machinic morphospace represents the set of all solutions that are manufacturable with a given machine.

PSO was used to perform a number of optimization runs of a simple test case, a truss consisting of six interconnected nodes, with the \(xy\)-position of the three support nodes as design variables. This showed that designs which were optimized considering fabrication constraints had a higher compliance than the designs optimized without such constraints. The production of a physical prototype confirmed that the theoretically manufacturable design could effectively be produced. We can conclude that adding fabrication constraints to the optimization problem indeed results in manufacturable designs, without the need for post-processing to solve manufacturability issues. It should however be noted that this problem with only six geometric variables already converges relatively slowly using a meta-heuristic optimization algorithm. For better performance, it would be advised to use gradient-based or hybrid algorithms.

References