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Surrogate models are an essential engineering tool, and their popularity is constantly increasing 
due to the high computational cost of evaluating real-world simulations. However, most of these 
functions are described by mixed variables (continuous and categorical), which makes it harder 
to create accurate interpolation functions. This work builds a surrogate model from a given 
mixed data set, in order to quickly and accurately calculate the mechanical performance of 
hybrid discontinuous composites materials, see Figure 1. Then, in order to find the optimal 
hybridization, three different approaches are performed: mono-objective, inversion and multi-
objective. Starting from an experimental database, the mixed categorical-continuous 
optimization process is performed by coupling a multi-armed bandit strategy and a continuous 
Bayesian optimization algorithm. The efficiency of our proposed approach is tested, and two 
main results are achieved. Firstly, the obtained surrogate models are shown to be sufficiently 
accurate, having an R^2 score greater than 90% on average. Secondly, our proposed 
optimization process is able to identify correctly optimal fibres with respect to desirable targets 
provided by the industrial partner. While demonstrated for composite material optimisation in 
this work, the approach is applicable and has been proven to work on many other industrial 
problems that are characterised by both categorical and continuous variables including 
packaging design optimisation, steam engine optimisation and medical diagnostic tools.  
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Figure 1 An overview of the data-driven optimization 


