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ABSTRACT 

Internal variable method (IVM) is an alternative for conventional models describing processing of 

materials. When the latter are used the history of the process is not accounted for. Change of the 

process conditions moves the model to a new equation of state without delay, which is observed in 

experiments. When external variables are replaced by internal ones, this disadvantage is eliminated. 

An approach based on works [1,2], which uses dislocation density as the independent variable, was 

considered. The differential equation describing evolution of dislocation populations () is:  
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where: b – Burger vector, Z – Zener-Hollomon parameter, T – temperature in K, R – gas 

constant, tcr – time at which critical dislocation density is reached, a1 – a13 - coefficients. 

Solution of equation (1) gives variations of the dislocation density in a deterministic form. 

On the other hand, information about distribution of parameters is often needed. Therefore, 

equation (1) was written assuming stochastic function of dislocation density: 
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G(,t) represents volume fraction of the material with the dislocation density between  and 

 + d in the time t. Solution of (3) gives distribution of the dislocation density. When this 

solution is implemented in the FE code and equation (3) is solved in each Gauss integration 

point, an information about distribution of the dislocation density is obtained for the 

computational domain. Proper identification of the coefficients in equation (3) is crucial for 

the accuracy of the method. Since measurement of the distributions of dislocation density is 

not trivial, identification of the stochastic model is complex. This problem was the objective 

of the present work. An inverse analysis was applied, see [3] for Authors’ algorithm. 

Identification was based on the flow curves during two step deformation. Dynamic 

phenomena were investigated accounting for the drop of the flow stress during the first step 

of deformation. Static part was identified on the basis of measurement of this stress during 

the second step. The model with optimal coefficients proved its capability to reproduce the 

response of the material involving oscillations, which is characteristic for pure metals. 
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