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ABSTRACT. We present an analytical solution for flow to a partially penetrating well in a compressible 

unconfined aquifer that allows inferring its unsaturated hydraulic properties from drawdowns recorded in the 

saturated zone. Tartakovsky and Neuman (2007) developed such a solution considering an unsaturated zone of 

infinite thickness. In their solution three-dimensional, axially symmetric unsaturated flow was described by a 

linearized version of Richards’ equation in which both relative hydraulic conductivity and water content vary 

exponentially with incremental capillary pressure head relative to its air entry value aψ . Both exponential 

functions were characterized by a single exponent κ  having the dimension of inverse length, or equivalently a 

dimensionless exponent 
D bκ κ=  where b is initial saturated thickness. We generalize their solution by 

characterizing relative hydraulic conductivity and water content using different exponential functions and 

allowing the unsaturated zone to have finite thickness. Our four-parameter representation of unsaturated aquifer 

properties is more flexible than the three-parameter version of Mathias and Butler (2006), who consider flow in 

the unsaturated zone to be strictly vertical and the pumping well to be fully penetrating. After validating our 

solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties 

described by the van Genuchten (1980) and Mualem (1976) models, we investigate the effects of unsaturated 

zone thickness and constitutive parameters on drawdowns in the unsaturated and saturated zones as functions of 

position and time. We conclude by using our solution to analyze drawdown data from a pumping test conducted 

by Moench et al. (2001) in a Glacial Outwash Deposit at Cape Cod, Massachusetts, and compare our results 

with those of Tartakovsky and Neuman (2007). 

1. INTRODUCTION 

  We present an analytical solution for flow to a well in an unconfined aquifer that allows inferring its 

unsaturated hydraulic properties from drawdowns recorded in the saturated zone. 

  Tartakovsky and Neuman (2007) developed an analytical solution for flow to a partially penetrating well 

pumping at a constant rate from a compressible unconfined aquifer considering an unsaturated zone of infinite 

thickness. In their solution three-dimensional, axially symmetric unsaturated flow was described by a linearized 

version of Richards’ equation in which both relative hydraulic conductivity and water content vary exponentially 

with incremental capillary pressure head relative to its air entry value 0aψ ≥ . Both exponential functions were 

characterized by a common exponent κ  having the dimension of inverse length, or equivalently a dimensionless 

exponent 
D bκ κ=  where b is initial saturated thickness. 

  A solution admitting two separate values of κ , one characterizing relative hydraulic conductivity and the other 

water content, was developed by Mathias and Butler (2006). Whereas their solution allowed the unsaturated zone 

to have finite thickness, it considered flow in the unsaturated zone to be strictly vertical and the pumping well to 

be fully penetrating. 

  Analyses by Moench (2008) have indicated a need to characterize relative hydraulic conductivity and water 

content by two separate exponents. The work of Tartakovsky and Neuman (2007) has demonstrated the 
importance of partial penetration and the existence of horizontal unsaturated flow toward the pumping well. This 

has led Moench (2008) to conclude that extending the model of Tartakovsky and Neuman (2007) to include two 

separate exponents, finite unsaturated zone thickness and borehole storage would constitute a welcome addition 
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to the aquifer-test literature. We present an analytical solution that is similar in all respects to that of Tartakovsky 

and Neuman while characterizing relative hydraulic conductivity and water content by means of separate κ  and 

aψ  values and taking the thickness of the unsaturated zone to be finite. Our four-parameter representation of 

these functions is more flexible than the three-parameter version of Mathias and Butler (2006), providing 

improved fits to standard models such as that of van Genuchten (1980) and Mualem (1976). Our solution further 
differs from that of Mathias and Butler (2006) in that it allows flow in the unsaturated zone to take place 

horizontally and the pumping well to be partially penetrating. After validating our solution against numerical 

simulations of drawdown in a synthetic aquifer having unsaturated properties described by the van Genuchten 

(1980) and Mualem (1976) models, we investigate the effects of unsaturated zone thickness and constitutive 

parameters on drawdowns in the unsaturated and saturated zones as functions of position and time. We conclude 

by using our solution to analyze drawdown data from a pumping test conducted by Moench et al. (2001) in a 
Glacial Outwash Deposit at Cape Cod, Massachusetts, and compare our results with those of Tartakovsky and 

Neuman (2007). 
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Figure 1. Schematic representation of system geometry. 

2. THEORY 

2.1. Statement of Problem 

  In a manner similar to Tartakovsky and Neuman (2007) we consider a compressible unconfined aquifer of 

infinite lateral extent resting on an impermeable boundary (Figure 1). The aquifer is spatially uniform and 

anisotropic with a fixed ratio /D z rK K K=  between vertical and horizontal saturated hydraulic conductivities, 

zK  and 
rK , respectively. The aquifer is saturated beneath an initially horizontal water table at elevation z b=  

defined as a 
aψ ψ=  isobar where ψ  is pressure head and 0aψ ≤  is the pressure head required for air to enter a 

saturated medium. A saturated capillary fringe at non-positive pressure 0aψ ψ≤ ≤  extends from the water table 

down to the 0ψ =  isobar (traditional water table) at elevation 
ab ψ+  (note that the capillary fringe disappears if 

one sets 0aψ = ). Prior to the onset of pumping the saturated and overlying unsaturated zones are at uniform 

initial hydraulic head
0 ah b ψ= + . Starting at time t = 0, water is withdrawn at a constant volumetric rate Q from 

a well of zero radius that penetrates the saturated zone between depths l and d below the initial water table (at air 
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entry pressure). Under these conditions the drawdown ( ) ( )0, , , ,s r z t h h r z t= −  in the saturated zone is governed 

by the diffusion equation 
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where 
sS is specific storage and ( ), ,b s r tξ ξ= −  is head at the water table. If the top of the unsaturated zone is 

at elevation z b L= +  (L being the thickness of the unsaturated zone) then the drawdown 

( ) ( ) ( )0, , , , , ,ar z t h h r z t b h r z tσ ψ= − = + −  in this zone is controlled by Richards’ equation 
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where ( )0 1k ψ≤ ≤  is relative (ratio of actual to saturated) hydraulic conductivity and ( ) 0C ψ ≥  is specific 

moisture capacity ( ) /C d dψ θ ψ= , θ  being volumetric water content. The unsaturated and saturated zone flow 

regimes are coupled by interface conditions representing continuity of pressure and normal flux across the water 

table 

 s σ=          z ξ=  (12)  

 s σ∇ ⋅ = ∇ ⋅n n          z ξ=  (13)  
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where ( )/ , /
T

r z∇ = ∂ ∂ ∂ ∂  is the three-dimensional axially-symmetric gradient operator, the superscript T 

denoting transpose, and n is a unit vector normal to the water table. 

2.2. Linearization 

  The above system of equations is highly non-linear due to (a) the nonlinear nature of Richards’ equation and (b) 

the presence of a moving interface (water table) between two different (saturated and unsaturated) flow regimes. 

To solve it we restrict ourselves to a pumping rate Q that is small compared to Krb
2, expand the dependent 

variables in power series and disregard terms of order higher than first in Q, as did Kroszynski and Dagan 

(1975). Substituting the remaining linear terms (in Q) into (1) – (13) and treating horizontal flux into the 

pumping well as if it was vertically uniform led Tartakovsky and Neuman (2007) to the following first order 

representation of flow in the saturated zone 
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  The corresponding first-order (linearized) unsaturated flow equations are 

 ( ) ( ) ( )0 0 0

1
r zK k z r K k z C z

r r r z z t

σ σ σ∂ ∂ ∂ ∂ ∂   
+ =   

∂ ∂ ∂ ∂ ∂   
         b z b L< < +  (20)  

 ( ) ( )0 0k z k θ=          ( ) ( )0 0C z C θ=  (21)  

 
0 0σ =  (22)  

 ( ), , 0z tσ ∞ =  (23)  

 0
z

σ∂
=

∂
         z b L= +  (24)  

 
0

lim 0
r

r
r

σ
→

∂
=

∂
         b z b L< < +  (25)  

  The linearized interface conditions at the water table are 

 0s σ− =          z b=  (26)  
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  Like Tartakovsky and Neuman (2007) we represent the medium water retention characteristics by means of an 

exponential function 
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where 
eS  is effective saturation, 

rθ is residual water content and 
y s r

S θ θ= −
 
is drainable porosity or specific 

yield. Like them we adopt Gardner’s (1958) exponential model for relative hydraulic conductivity 
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k
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k

ψ  that may differ from 
c

a  and 
a

ψ  in (28). The parameter 0
k
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pressure head above which relative hydraulic conductivity is effectively equal to unity. Our four-parameter 

representation of these functions is thus more flexible than the two-parameter representations of Tartakovsky and 

Neuman (2007) (
c
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a

ψ ) or Mathias and Butler (2006) (
c
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in (20) – (21). 

2.3. Point Drawdown in Saturated and Unsaturated Zones 

  In a manner analogous to Neuman (1974) and Tratakovsky and Neuman (2007) we decompose drawdown in 

the saturated zone into two parts 

 
H Us s s= +  (32)  

where 
Hs  is Hantush’s (1964) solution for a partially penetrating well in a confined aquifer and 

Us  is a 

correction due to the presence of an unsaturated zone. Hantush’s solution further decomposes into 

 H Ts s s= + ∆  (33)  

where 
Ts  is the Theis (1935) solution and s∆  is a correction due to partial penetration. This allows obtaining a 

complete solution in Laplace transformed form. The corresponding time domain solutions Us  and σ  are 

evaluated numerically using the inverse Laplace algorithm of Crump (1976) as modified by de Hoog et al. 

(1982). The time-domain solution is expressed in terms of dimensionless parameters /D z rK K K= , 2/s st t rα= , 

/s r sK Sα = , /
D y

S S S= , /kD k bψ ψ= , /aD a bψ ψ= , 
kD ka a b= , 

cD ca a b= , /Dl l b= , /Dd d b= , /Dr r b= , 

and /Dz z b= . 
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3. PREDICTED DRAWDOWN BEHAVIOR 

  To investigate drawdown behavior based on our new analytical solution we consider, for simplicity, the case 

where 
a kψ ψ=  and correspondingly 

1 0b = . 

3.1. Time Drawdown Behavior in Saturated Zone 

  To investigate the effect of the constitutive exponents kDa  and cDa  we start by considering an isotropic aquifer 

( )1
D

K =  with a ratio / 1 /100
y

S S =  between artesian storativity and specific yield. To investigate the effects of 

kDa , the dimensionless exponent for relative hydraulic conductivity, we set the dimensionless exponent for 

effective saturation to 1.0. We also set the unsaturated zone thickness to infinity, L → ∞ . Figure 2 shows how 

dimensionless drawdown 4 /D rs K bs Qπ=
 
varies with dimensionless time ( )2

/s rt K bt Sr=  on log-log scale at 

dimensionless elevation / 0.5z b =  and dimensionless radial distance / 0.5r b =  from the pumping well, which 

fully penetrates the initial saturated zone. When 1kD cDa a= = , our solution reduces to that of Tartakovsky and 

Neuman (2007). As 
kDa  increases the hydraulic conductivity in the unsaturated zone starts to decrease at a 

relatively fast rate with a decrease in capillary pressure and hence our solution starts to deviate from that of 

Tartakovsky and Neuman. At very large 
kDa  this decrease is almost instantaneous and the unsaturated zone 

behaves as if it was impermeable. Hence the aquifer behaves as if it was confined and our solution reduces to 

that of Hantush (1964) for a confined aquifer. 

 

Figure 2. Dimensionless drawdown versus dimensionless time for various values of kDa . 

  Figure 3 depicts dimensionless time-drawdown behavior on log-log scale when the dimensionless effective 

saturation exponent 
cDa  varies while 

kDa  is held constant, all other conditions being the same as in Figure 2. 

When both exponents are large, the unsaturated zone plays virtually no role and our solution reduces to that of 

Neuman (1974) for a moving free surface. 
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Figure 3. Dimensionless drawdown versus dimensionless time for various values of cDa . 

  We conclude this section by showing in Figure 4 how time-drawdown is affected by variations in 

dimensionless unsaturated zone thickness /DL L b=  when 10kD cDa a= =  under conditions similar to those in 

Figures 2 and 3. Reducing 
DL  is seen to cause dimensionless drawdown at intermediate and late dimensionless 

times to increase. 

 

Figure 4. Dimensionless drawdown versus dimensionless time for various values of DL . 

4. ANALYSIS OF SYNTHETIC AQUIFER TEST 

  We start by considering a 9 m thick anisotropic aquifer ( )0.4DK =  with horizontal hydraulic conductivity, 

3100.5 −×=rK  m/s specific storage 4
100.3

−×=sS  m
-1

 and specific yield 0.322yS = . Initially, a static water 

table is situated 2 m below the ground surface. A pumping well discharging at a rate of 60 l/min penetrates the 

upper 50% of the saturated zone such that 0.0dd =  and 0.5dl = . Water retention and relative hydraulic 

conductivity are described by the constitutive models of van Genuchten (1980) and Mualem (1976) with 

parameters log 1.453α = − , 0.375sθ = , 0.053rθ =  and log 0.502n =  typical of sandy soils (Schaap et al. 



Phoolendra Kumar Mishra and Shlomo P. Neuman 

8 

 

2001). Figure 5 shows a least squares fit of our four-parameter exponential models to the latter, yielding 

parameter estimates 12 cmaψ = , 7 cmkψ = , ak = 8.1 m
-1

, ac = 2.9 m
-1

. Figure 6 compares time drawdowns at 

dimensionless elevation / 0.5z b =  and dimensionless radial distance / 0.5r b =  obtained numerically with the 

STOMP code (Ward et al. 2005) based on van Genuchten – Mualem parameters and our analytical solution with 

the above best-fit parameters. The agreement is good. 

 

Figure 5. Best fit of our four parameter exponential model to van Genuchten (1980) and Mualem (1976) constitutive models in 

synthetic case 
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Figure 6. Comparison of numerical and analytical time drawdowns at / 0.5z b =  and / 0.5r b =  in synthetic case. 

5. ANALYSIS OF CAPECOD AQUIFER TEST 

  We used our solution to analyze drawdown data from a pumping test conducted by Moench et al. (2001) in a 

Glacial Outwash Deposit at Cape Cod, Massachusetts. We present below preliminary results for 10 observation 
wells and piezometers lying closest to the pumping well at radial distances not exceeding 26 m. The 10 time-

drawdown records were fitted simultaneously to our analytical solution by minimizing the sum of squared 

differences between them using PEST. A comparison between observed and computed drawdowns 

corresponding to these 10 records is presented in Figure 7. Table 1 lists the estimated parameters together with 

those obtained by Moench et al. (2001) and Tartakovsky and Neuman (2007) based on all recorded drawdowns. 
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Whereas our estimates of hydraulic conductivity and specific storage are similar to those obtained by Moench et 

al. (2001) and Tartakovsky and Neuman (2007), our specific yield is higher. 

  The exponential constitutive model parameters ac = 0.22 m
-1

, ak = 1.30 m
-1

 and ψk – ψc = 36.41 cm in the last 

raw of Table 1 correspond to van Genuchten (1980) and Mualem (1976) model parameters α = 0.059 m
-1

 and 
n = 2.14; the two sets of models are compared in Figure 8. 

 

Figure 7. Comparison of simulated (solid lines) and observed drawdowns (dots) at 10 observation wells. 

Table 1. Parameters estimates obtained by fitting our solution to 10 drawdown records from observation wells and piezometers closest to the 

pumping well compared with corresponding estimates by Moench et al. (2001) and Tartakovsky and Neuman (2007). 

 

Kr (m/s) Kz (m/s) Ss (m
-1) Sy ac (m

-1) ak (m
-1) 

 
ψk - ψc (cm) 

 

Moench et al. 
(2001) 1.17x10-3 7.11x10-4 4.27x10-5 0.26 - - - 

Tartakvosky and 

Neuman (2007) 1.02x10-4 8.13x10-4 9.84x10-5 0.18 κ = ac= ak = 0.159 

- 

 

This study 1.23x10-3 6.33x10-4 1.04x10-4 0.33 0.22 1.30 36.41 
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Figure 8. van Genuchten (1980) and Mualem (1976) constitutive models (solid) fitted to exponential constitutive models with parameters in 

raw 3 of Table 1. 
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