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RESUMEN. La conductividad eléctrica aparente del suelo {Effuede mejorar la estimacién espacio-
temporal de algunas propiedades del suelo, percegplcaracterizar también el carbono orgéanico (SOC)
en un ensayo a largo plazo de sistemas de manejps?résultados mostrados en este informe asi lo
prueban. La EGQy el SOC fueron mayores en las parcelas de Siendirexta que en las de laboreo
tradicional. Los mapas de EQnostraron las diferencias atribuidas al sisemand&nejo y a la topografia.
El mapa obtenido por clasificacidn difusa de laedéncia normalizada de la EGle la superficie del suelo
(ECas) y del suelo profundo (ECad) (FKM1), asi caghoobtenido a partir de EQy EG,, representaron

el 30 % de la variabilidad total del SOC, mientrge el valor medio de cada parcela y de cada siatden
manejo representaron el 44 y 41 %. El krigeado $&mgon media local variable empleando FKM2 o el
SOC promedio de una parcela como informacion seauadmejoraron la estimacion del SOC con
respecto al krigeado ordinario. A pesar de la rediaccorrelacion entre el SOC y la E(sta fue Util para
mejorar la estimacién espacial del SOC.

ABSTRACT. Ancillary information, such as apparent electricabnductivity (EG), can improve the
spatial and temporal estimation of some soil prajgsr, but can it also infer the soil organic carboontet,
SOC? The results of this report confirm this hygsik in a long-term tillage experiment. Both JE&hd
SOC were higher in the DD plots. E@aps showed tillage and topographic effects or spatial
variability. A normalized difference of shallow adéep EG, 4EC, (FKM1) and EGqy and EGs (FKM2)
classified by fuzzy k-means accounted for 30% eftohal SOC variability, whereas the individual {do
and the soil management system explained 44 and, 4d8pectively. Simple kriging with local varying
means using either FKM2 or plot-average SOC as s@any information improved the SOC estimation
compared with ordinary kriging. Despite the low pbBio-point correlation between EGnd SOC, EC
was shown to be useful for the spatial estimatib8@C.
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1. INTRODUCTION

Soil organic carbon (SOC) plays an important riol@ wide variety of biogeochemical fluxes. Howgve
SOC stores are not well defined while an increaglegnand for its accurate characterization at daffier
scales is required. This information can help talamstand SOC cycles and determine under which
circumstances soils act as either a C source d& @mith, 2004) and evaluate the effects of differe
management strategies on soil properties and éssions. Direct SOC spatial characterizationyédwer,
requires a large number of soil samples. As anrretére, Kravchenko and Robertson (2007) integrated
secondary information such as topographic attribude yield to improve SOC spatial characterization.
These variables did not improve significantly thpatal characterization of SOC. Nowadays, the
availability of modern remote and proximal sensprsvides other sources of secondary informatiort tha
are useful for the characterization of differenil qwoperties at different scales and depths. Rmnati
sensors have a better performance for studyingdsgth relationships and distribution of soil plogiand
chemical properties at small to medium scales, evhiimote sensors are especially useful for vegetati
related properties at medium to large spatial scalad at the soil surface (Robinsenh al. 2008).
Electromagnetic induction proximal sensor has besed to explore vadose zone relationships between
apparent electrical conductivity (ECand soil properties at small scale research (Haobkkiet al. 1988;
Carrol and Oliver, 2005; Vithararet al. 2006, Welleret al. 2007; Abduet al 2008). Linear relationships
between Egand other soil properties were not always stromgugh to use Co-Kriging. As an alternative,
EC, has been used to assist the spatial classificatideC, -related soil properties to define homogeneous
areas (Cockxet al 2005; Vitharanaet al. 2006) and management-induced changes (McCutcle¢al.
2006). These alternatives offer a chance to apfily dnh the spatial characterization of soil organithoa
and to discriminate the effects of management o& SThe objective of this work was to analyze whethe
EC,—based secondary information improves SOC spadiathation in a tillage experiment.

2. MATERIALS AND METHODS

2.1 Study Site

The study was conducted in a 3.5-ha parcel ofTibmaejil Experiment Station (37°24’ N, 5°35' W, T®
above sea level) not far from Seville. Clay is gredominant size fraction (60% on average) in t15b-
m horizon, with small differences in particle sidéstribution within the field. In the fall of 1982
management experiment was initiated to compareatirenomic consequences and the evolution of soil
physical and chemical properties under conventidil@ige (CT), minimum tillage, and Direct Drilling
(DD) (Ordoiiezet al. 2007). Figure 1 shows the layout of three replisaieCT and DD plots, distributed
in three blocks, with individual dimensions of 1% 8 m. The crop rotation was wheat-sunflower-legum
The field was left fallow between the harvest ofeahin June 2005 and the drilling of sunflower iprih
2006.

Soil sampling and sensing.

In fall 2005 soil samples from the upper horiZ6r0.15m) were collected, 71 according to a steatifandom
design and 24 randomly located to get a wide rafgdistances between sampling points (Fig. 1). App&
electrical conductivity was sensed using an EM38-{@®2onics Ltd., Missisauga, ON, Canada) at two ldept
shallow (EGg and deep (Ef). The sensor integrates the readings of two senptaced in opposite
orientations, vertical and horizontal and soil #egpeénsed by each EM38 depends on soj| &allegaryet al.
2007). The estimated depths for £8nd EG4 can be around 0.5 and 0.7 m respectively. Soj $8Dsing was
carried out coupled to soil sampling on the Falk6D5 and more intensively on March 2006, when wai$
moister, to create E@elated maps. Soil samples were dried crushedsigved prior to SOC analysis following
the method of Walkley and Black (Spad¢sal. 1996).
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Figure 1. Topographic field-map. Overlaid appear subplotwhite, SOC and E{sample points of Fall 2005 (crosses) and, EC
dense survey of March 2006 (dots).

2.3. Data analysis.

As a way to merge Egand EGginformation we calculated a normalized differermsgween them (Eq.
1). The normalized difference filters common vaiiip in EC,4 and EGs from the signals and elucidates
differences between the soil surface and the desmehorizons.

nEC, =| £ || ECs (1)
EC,,) | EC,

Geostatistical analysis

A random function (RF) can be decomposed as adfutiree components, the expected value of theaRF,
stochastic spatially dependent term, and a spatialtorrelated noise term (Goovaerts 1997). Thedta local
mean, was calculated as (i) the spatial average &t individual experimental plots, (ii) the aage SOC of
each management type, or (iii) the average SO@eoflifferent classes obtained by classificatiore Tésiduals
were then obtained as the difference between thariFts local mean. The spatial correlation stmecbf the
total SOC data set and its residuals were calallastng the variogram. Depending on the model sastiefor
the local mean, different forms of the kriging esitor can be distinguished. Ordinary kriging (OKg@unts for
local fluctuations of the mean but considers tlabal mean an unknown constant and uses the vamiogfahe
RF, while in simple kriging with varying local meau(SKIm), the mean is a known, stationary value toed
residual variogram is used instead. Cross validatissesses the performance of the Kriging and stsnef
successive elimination of each data value andsitsnation from the remaining points. To give queative
indexes of cross validation the root mean squa €RMSE) and the Nash-Sutcliffe efficiency ind&) were
used. Ordinary kriging and SKIim of SOC were comgutsing the kt3d program from the Geostatistical
software library (GSLIB) of Deutsch and Journel98R The EGy EC,s andAEC, values (from the March
2006 survey) were interpolated by OK using VESPEmRésny et al 2002a), which is especially useful for
interpolating large data sets since it allows tbe of local variograms.

Classification procedure.

Classification was performed by the Fuzzy k-mg&kaM) algorithm using the program FuzME (Minasmda
McBratney 2002b). Data used for FKM were (i) OKeirgolatedAEC, data (FKM1) and (ii) OK-interpolated
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EC,q and EGs data (FKM2) from the March EQlata set, selecting only those points locatedientie CT and
DD subplots. Fuzzk-means is an unsupervised classification methodsiplés the data set in random groups
and clusters data by iterating the calculationisfathces or dissimilarities, between individualadabints and a
class center. Grouping is achieved minimizing iclaas variation and maximizing interclass variatibnzzyk-
means is a method that allows for the overlappingasses, determined by its fuzzy exponent Wwheree = 1
represents no overlap amd> 1 represents an increasing overlap betweenechisir classes. The optimal
number of classes is given by two functions invdlwe FKM classification, the fuzziness performaricdex
(FPI) and normalized classification entropy (NCBpéhet al. 1992). The FPI function estimates the degree of
segregation generated by a specified number ofetasvhile the NCE estimates the degree of disaraton
created by a specified number of classes. The smfundex (Cl) is a measure of the sharing of atpo
between classes. The minimum of both FPI and NG the optimal number of continuous and structured
classes. For FKM1, the optimal was 2.4 and two classes yielded less segregatidndasorganization of
groups, while for FKM2, the optimap was lower, 1.9, and four classes yielded lessegggion and

disorganization of groups.

3. RESULTS AND DISCUSSION

3.1. Exploratory data analysis.

In general, SOC was lower than 13 g*and had a slightly skewed distribution (Table[l)e to the high clay
content of this soil and the positive correlatiaiviieen clay and EQeported by several authors (Vitharata
al. 2006; Welleret al 2007; Abduwet al. 2008), mean E£ and EGs values observed in October 2005 and March
2006 were higher than for other soils (Coakxal. 2005; Vitharanaet al. 2006; McCutcheoret al. 2006).
Skewness was higher for E3han for EGs reflecting the presence of areas with largef@lues, extending
far beyond the mean. From a management point of,wiee CT plots contained less SOC than the DDsplot
(9.16 and 11.7g K¢, respectively) and exhibited, on average, lowegH?9.6 and 86.0 mS T respectively)

and EGg values (50.7 and 62.1 mS respectively).

TABLE 1. Descriptive statistics of soil organic carbon samsplshallow and deep apparent electrical condugtéensed in October
and for the intensivdeEC, survey of March 2006 using only points locatedhivitthe plots. Q25 is the lower quartile, Q50 the
median, Q75 the upper quartile and CV is the cogfit of variation.

SOC EC::II EC;:H ECZ‘darCh ECZ‘:mh
(9 kg") (S i) (S i) (S i) (S ni)
N 93 69 69 1609 1609
Mean 10.4 82.7 56.3 122, 59.6
Que 8.81 75.4 50.1 115. 50.6
Qs 10.0 82.1 56.4 121. 61.3
Qne 11.7 85.8 62.6 127. 65.8
Min. 6.90 63.1 38.4 96.9 25.4
Max 16.3 119, 88.5 170. 95.8
Variance 4.38 141, 94.7 137. 105.
cv 0.201 0.14 0.17 0.10 0.17
Skewness 0.738 1.06 0.44 1.25 0.44
Kurtosis 0.003 1.66 0.87 2.68 0.54

Although organic matter loading increased by 1@Ma™ during the long-term experiment as a consequehce o
the minimization of tillage (Ordéfiezt al. 2007), the SOC content remained low. The SOC rmegiavas four
times higher under DD than under CT (4.62 and §08g >, respectively), contrary to the findings of Petfec
and Caron (2002) who found less variability undé@r for a silt loam soil. This difference can be asequence
of the presence of areas in which crop residueraatates when harvest operations are done. In &intree
EC, variance was lower in the DD than in the CT plbisth for EGq (122 and 144 nfam™, respectively) and
EC.s (48.8 and 75.3 nfam™, respectively). Correlation coefficients betweedCSand EGy, EC,s andAEC,
were 0.175, 0.331, and -0.404, respectively. Thaseelations were weak; therefore, we did not ekpec
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cokriging to improve SOC estimation using Fdata. These low correlations might be caused)hyifferences
in the soil volume explored by the EM38-DD and neraugering, (ii) the small range of SOC value), tfie

weight-based SOC observations against volumetrig lB€asurements, and (iv) the bulk influence of ol

properties on EC In March, higher EG and EG values (122 + 0.29 and 59.6 + 0.25 mS,mespectively)
were observed than in October due to the highémsamisture content and possible solubility of sakewness
was again higher in E@while the interquartile range was similar for §@nd EGs (12.3 and 15.1 mS th

respectively). The mean Egand EGg values for DD were 128 + 0.44 and 67.8 + 0.27 m&mespectively, and
for CT 118 + 0.32 and 53.4 + 0.25 mS™respectively.

3.2. Apparent Electrical Conductivity Maps.

Ordoiiezet al. (2007) reported management-induced changes isdihehysical and chemical properties of this
field as a consequence of the different tillageesyps. The CT and DD plots could be best distingadsbn the
AEC, map (Fig. 2); however, big differences can beimtistished on the E{ and EGs maps. Positive\EC,
values corresponded generally with the CT plotsijemhegative values were mainly observed within B2
plots. This same pattern was also observed foE@emeasurements in October. According to Eq. [1]itpes
AEC, values occur when the normalized Jg€xceeds the normalized ELCwhich might be a consequence of
the denser and wetter subsoil and a higher Elettdonductivity of the subjacent soil (Lozano 2008)
Vanderlindenet al. (2008) found persistently higher soil water cohi@enDD plots during the growing season,
with a permanently drier surface horizon.

a) Block 1 b)
Block 2 CT
DD
CT
Block 3, DD
CT
ECad mS m -1 ECas DD mSm -1
[ - T [ T

105 115 125 135 145 155 165 35 45 55 65 75 85 95 N -0.15 -0.05 0.05 0.15 0.25

meters
— —_— —
0 20 40 60 80 100

Figure 2. Ordinary kriging maps of (a) deeper soil appamettrical conductivity (E), (b) shallower soil apparent electrical
conductivity (EGg, and (c) normalized apparent electrical conduttidifference AEC,), for the intensive survey of March 2006
under conventional tillage (CT) and direct drilliggD).

The maps in Fig. 2 show the heterogeneous natuteedE T plots, with a transition to DD values ntar edge
of the plots where the tillage operations mightéhéeen less effective. Topographic influences ensibatial
EC, distribution were also found and are displayedignre 2, but are not visible withEC,. Generally, high
EC, values occur in the lowest parts of the field (Fig and 1b), which could be a coupled effect @f th
accumulation of nutrients, water, and sedimenthénlowest part of the field. The E@alues were related not
only to the tillage system, but depended also @ir flocation within the field. For example, plotscated in
Block 3 had higher EQvalues since they were situated in the lowestgfatie field.

3.3. Fuzzy k-Means Classification.

Normalized Apparent Electrical Conductivity Diffeiee Classification

Figure 3a shows the distribution of FKM classed,aas it also occurs with theEC, map, CT are clearly
separated from the DD plots. Areas with ClI highemnt 0.5 were mainly located near plot edges, stepaim
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intermediate behavior between Classes 1 and 2iripli/, these areas were included in the classwhich
their membership was highest. Class 1 mainly detidnareas managed under CT, except for a smaliirsplog¢
DD plot of Block 3, close the CT plot. Class 1 slkoMow SOC (9.5 g Kd), a positiveAEC, value (0.09), and
mean EGy and EGs values of 116 and 52 mS mClass 2 generally corresponds to DD plots anc:rsév
borders of the CT plots. This class showed higladuas for both EG and EGs (126 and 67 mS i) and for
SOC (11.4 g ki) than class 1.

Vertically and Horizontally Sensed Apparent EleztiConductivity Classification

The FKM1 and FKM2 maps (Fig. 3a and 3b) showedediffices between CT and DD plots. However, only
FKM2 could show a topographic effect with differescbetween Block 3 and the other blocks. Areas with
high confusion index were situated near the plgtesdike in FKM1 and within Block 3 where the hyldigic
behavior of the field changes. Class 1 delimiteghay with high SOC and medium EGvere mainly within the
DD plots of Blocks 1 and 2, with higher slope atiitiede. Class 2 showed the lowest E@lues and SOC
content. This class was mainly located in the Cdtspbf Blocks 1 and 2, which have similar topogieph
attributes (Fig. 1). Class 3 showed medium SOCraadium EG (Table 3). This class covered some areas of
Block 3, especially near plot edges. Average SOfbimclass (10.1 + 0.57 g kg—-1) was lower thanaherage
value of the DD plots (11.7 + 0.31 g kg-1). These-hltitude areas and plot edges showed mediunresaiti
EC,, probably due to higher nutrient and moisture ept# than Classes 1 and 2. Areas included in @lassl a
similar SOC content and had been managed in the seay as most of Class 1. The differences foundewer
probably a consequence of topographic effects (Bigas also observed by Kravchenko and Rober2odi7j.
Other researchers have also concluded that lowddtiareas and edges or headlands are moisterhamd s
higher EG values (Cockxet al.2005; Vitharanat al.2006).

Block 3 Block 2 Block 1

Block 3 Block 2 Block 1
DD cT DD CT DD CT CT

DD CT
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Figure 3. Class maps obtained by Fuzzy k-means classifitasing: a) normalized apparent electrical conditgtdifference (FKM1) and
b) surface and deep soil apparent electrical candiyc(FKM2). Class O represents zones where thetgsion index is higher than 0.5.
Superposed points are the soil sampling locations.

3.4 Soil Organic Carbon Estimation

The spherical models fitted to the SOC and redidariograms are shown in Fig. 4. Variogram si#ifiect the
total variability or the unstructured variabilitf 80OC and its residuals. Sills of the FKM1, FKM2otp and
management residual variograms were 29, 30, 44,4484 smaller, respectively, than the SOC sill. Ehes
differences between the residual variograms andSB€ variogram indicate that a large part of theCSO
variance in the field can be explained by ECa aadagement. For the FKM2 and plot residual variograime
nugget/sill ratio exceeded 0.80, showing that stenye variation and procedural errors were thet ingsortant
sources of residual variation. The variogram rangfest gives a measure of up to what extent thgig a
structured spatial variation, were close to thet pladth (15 m). This indicates that most of theustured
variance occurred within individual plots and blsclnd that points from blocks 1 and 2 are not @egto
those of block 3. The SOC variogram sill was redchielarger lag distances, for which data pairsswermed
by points from adjacent plots with different sonagement systems.
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Figure 4. Variograms for soil organic carbon (SOC) and SOS€ideals calculated using local means obtained fiwzay k-means
classification for normalized apparent electricahductivity data (FKM1) and for vertically and hpontally sensed apparent
electrical conductivity data (FKM2) and plot and magement mean values.

The cross-validation of the kriging estimatiorosled that SKIm performed better than OK in all sase
except SKIm-FKM1. The improvement of the RMSE rahgeom -2% for SKIm-FKM1 to 19% for
SKIm—plots. Compared with OK, both SKIm-FKM2 and IBikmanagement reduced the RMSE by 8%,
indicating that, in this case, Etased secondary information is as efficient a$ m@inagement-based
knowledge for interpolating SOC. The improvementSKIm-FKM2 and SKIm-management are in the
same order of magnitude than that of Kravchenko Robdertson (2007) who obtained a reduction of the
RMSE of 10% using topography and yield as second#igrmation in regression kriging. Although here
the improvement of SOC estimation is lower than 10@8aybe using an EQlataset with more sampling
dates can achieve a better improvement. Despitdotliecorrelation found between E@nd SOC, FKM
classification based information could improve 8@C estimation. Although the FKM1 and management
classification were very similar, poorer resultsreveobtained by SKIm-FKM1. This was due to the
classification of nine singular points, generalijuated near the edges of the plots. The FKM1 elsss
where these points were included did not coincidéh ithe management classification, according to the
plots to which they belonged. The Nash and Suglifidex was generally lower than 0.5, but incredsed
almost 70% for SKIm—FKM2 compared with OK, similar the results obtained for SKIm—management.
These findings indicate that E@& capable of capturing the spatial variability3®C, mainly attributed to
different management systems in this uniform clail. Other sources of within-plot variability of SO
could not be identified successfully, however, dattonly 30% of the variability in SOC could be
accounted for. Possibly changing from one pointeobation in time to average E@atterns can improve
SOC estimation.

4. CONCLUSIONS

Apparent electrical conductivity surveys can pdava cheap and useful information to capture Sdtial
variability at small to medium scales, and to as#ig quantitative spatial characterization of SQ@Ge

ECa data elucidated differences in soil propertissa consequence of topography and management and
explained >25% of the SOC spatial variation. TheMadKand FKM2 classifications of ECa could
successfully delimit homogeneous soil units relatedoil management and the spatial distributioi®QIC.
Plot edges and accumulation areas introduced sdasand SKIm—FKM1 could not improve the spatial
estimation of SOC. The use of ECad and ECas asndacy information in SKIm-FKM2 reduced the
RMSE of the SOC interpolation by 8%, similar to klmanagement. The FKM2 classification was also
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able to differentiate plots from the same treatmamd showed variations within plots caused by other
factors like tillage, topography, erosion or comg@at. The results of this work can be useful fanigar
experiments on the assessment of soil C dynamiaderurdifferent tillage systems. Even in our
homogeneous clay soil, uniform management unitsldcdae identified using ECa and FKM, where
different experimental treatments can be best coetha
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