Liquid-Gas Phase Transition in Nuclear Matter from a Correlated Approach

Arnau Rios Huguet
National Superconducting Cyclotron Laboratory

Collaborators:
Artur Polls (Barcelona)
Àngels Ramos (Barcelona)
Herbert Müther (Tübingen)
A “hot” day in Barcelona’s history!

A day like today...

19 July 1936
Outline

1. Nuclear Matter at Finite Temperature
2. Self-Consistent Green’s Functions at Finite Temperature
3. Thermodynamical Properties of Nuclear Matter
4. Summary and conclusions
Motivation: “hot” nuclear systems

\[E \sim 1 \text{ MeV} \Rightarrow T \sim 10^{10} \text{ K} \]

Proto-neutron stars

Chandra X-Ray Observatory

SN 1181 remnant (SNR3C58) and
Pulsar PSRJ0205+6449

AA collisions

Nuclear caloric curve
Motivation: basic considerations

Nuclear Matter

- Infinite system of nucleons
- No surface effects
- Densities $\rho \sim 10^{14} \text{ g cm}^{-3}$
- Model interior of heavy nuclei and neutron stars

Liquid-Gas phase transition

- NN interaction \Rightarrow SR repulsion, LR attraction
- Van der Waals-like EoS
- $T_c \sim E/A|_0 \sim 16 \text{ MeV}$
Motivation: basic considerations

Nuclear Matter

- Infinite system of nucleons
- No surface effects
- Densities $\rho \sim 10^{14} \text{ g cm}^{-3}$
- Model interior of heavy nuclei and neutron stars

Liquid-Gas phase transition

- NN interaction \Rightarrow SR repulsion, LR attraction
- Van der Waals-like EoS
- $T_c \sim E/A|_0 \sim 16 \text{ MeV}$

Mean-field approach

Symmetric Nuclear Matter EoS - SLy4

- $T=0 \text{ MeV}$
- $T=5 \text{ MeV}$
- $T=10 \text{ MeV}$
- $T=15 \text{ MeV}$
- $T=20 \text{ MeV}$
Motivation: one-body Green’s function

Definition

\[iG(\vec{r}t, \vec{r}'t') = \left\langle T [\hat{a}(\vec{r}t)\hat{a}^\dagger(\vec{r}'t')] \right\rangle \]

All the one-body properties of a many-body system can be derived from the one-body Green’s function:

\[\langle \hat{X} \rangle = -i \int d^3r \lim_{\vec{r}' \to \vec{r}, \; t' \to t^+} x(\vec{r})G(\vec{r}t, \vec{r}'t') \]

Two-body properties can also be obtained \((E, S, \ldots)\)
SCGF: Ingredients

- **Main approximation**: decoupling at the level of G_{III}
- Includes short-range and tensor correlations
- Full off-shell energy dependence is considered
- Based on the perturbative expansion of the propagator at $T = 0$ and $T \neq 0$
- Thermodynamically consistent (conserving) theory
- **Ladder** includes hole-hole propagation (beyond BHF), which leads to a pairing instability for $T = 0$...
- Finite temperature actually solves theoretical problems!
SCGF: Ingredients

- **Main approximation**: decoupling at the level of G_{III}
- Includes **short-range** and **tensor** correlations
- Full off-shell energy dependence is considered
- Based on the perturbative expansion of the propagator at $T = 0$ and $T \neq 0$
- Thermodynamically consistent (conserving) theory
- **Ladder** includes hole-hole propagation (beyond BHF), which leads to a pairing instability for $T = 0$...
- Finite temperature actually solves theoretical problems!
SCGF: Ingredients

- **Main approximation**: decoupling at the level of \mathcal{G}_{III}
- Includes **short-range** and **tensor** correlations
- **Full off-shell** energy dependence is considered
 - Based on the perturbative expansion of the propagator at $T = 0$ and $T \neq 0$
 - Thermodynamically consistent (conserving) theory
 - **Ladder** includes hole-hole propagation (beyond BHF), which leads to a pairing instability for $T = 0$...
 - Finite temperature actually solves theoretical problems!
SCGF: Ingredients

- **Main approximation**: decoupling at the level of G_{III}
- Includes short-range and tensor correlations
- Full off-shell energy dependence is considered
- Based on the perturbative expansion of the propagator at $T = 0$ and $T \neq 0$
- Thermodynamically consistent (conserving) theory
- Ladder includes hole-hole propagation (beyond BHF), which leads to a pairing instability for $T = 0$...
- Finite temperature actually solves theoretical problems!
SCGF: Ingredients

- **Main approximation**: decoupling at the level of G_{III}
- **Includes** short-range and tensor correlations
- **Full off-shell** energy dependence is considered
- Based on the perturbative expansion of the propagator at $T = 0$ and $T \neq 0$
- **Thermodynamically consistent (conserving) theory**
 - **Ladder** includes hole-hole propagation (beyond BHF), which leads to a pairing instability for $T = 0$...
 - **Finite temperature actually solves theoretical problems!**
SCGF: Ingredients

- **Main approximation**: decoupling at the level of G_{III}
- **Includes** short-range and tensor correlations
- **Full off-shell** energy dependence is considered
- Based on the perturbative expansion of the propagator at $T = 0$ and $T \neq 0$
- Thermodynamically consistent (conserving) theory
- **Ladder** includes hole-hole propagation (beyond BHF), which leads to a pairing instability for $T = 0$...
- Finite temperature actually solves theoretical problems!
Ladder approximation

\[G_{\Pi} = \cdots + \ \text{X terms} + \ \text{H terms} + \ \text{V terms} + \ \cdots \]

- Valid for strong interactions and low densities
- Self-consistency is imposed at each step
- Solved in terms of Dyson’s equation
- Ladder self-energy
- In-medium interaction accounts for ladder scattering
Valid for strong interactions and low densities

Self-consistency is imposed at each step

Solved in terms of Dyson’s equation

Ladder self-energy

In-medium interaction accounts for ladder scattering
Ladder approximation

- Valid for strong interactions and low densities
- Self-consistency is imposed at each step
- Solved in terms of Dyson’s equation
- Ladder self-energy
- In-medium interaction accounts for ladder scattering
Ladder approximation

\[\sum_{\text{SCGF}} = \sum_{\text{part.}} + \sum_{\text{higher order}} + \sum_{\text{medium}} + \sum_{\text{internal}} + \]

- Valid for strong interactions and low densities
- Self-consistency is imposed at each step
- Solved in terms of Dyson’s equation
- Ladder self-energy
- In-medium interaction accounts for ladder scattering
Ladder approximation

\[T = + T \]

- Valid for strong interactions and low densities
- Self-consistency is imposed at each step
- Solved in terms of Dyson’s equation
- Ladder self-energy
- In-medium interaction accounts for ladder scattering
Ladder approximation

\[
\langle k_1 k_2 | T(Z_\nu) | k_3 k_4 \rangle = \langle k_1 k_2 | V | k_3 k_4 \rangle \\
+ \mathcal{V} \int \frac{d^3 k_5}{(2\pi)^3} \mathcal{V} \int \frac{d^3 k_6}{(2\pi)^3} \langle k_1 k_2 | V | k_5 k_6 \rangle G^{0}_{II}(Z_\nu ; k_5 k_6) \langle k_5 k_6 | T(Z_\nu) | k_3 k_4 \rangle
\]

- Valid for strong interactions and low densities
- Self-consistency is imposed at each step
- Solved in terms of Dyson’s equation
- Ladder self-energy
- In-medium interaction accounts for ladder scattering
Spectral decomposition of the propagator

- **Momentum-frequency space representation**

\[G(k, \omega) = \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} A(k, \omega') \left\{ \frac{f(\omega')}{\omega - \omega' - i\eta} + \frac{1 - f(\omega')}{\omega - \omega' + i\eta} \right\} \]

- **Spectral function:**

\[A(k, \omega) = \frac{-2\text{Im} \Sigma(k, \omega)}{\left[\omega - \frac{k^2}{2m} - \text{Re} \Sigma(k, \omega)\right]^2 + \left[\text{Im} \Sigma(k, \omega)\right]^2} \]
Spectral functions

$A(k, \omega)$ [MeV$^{-1}$] for various temperatures and densities.

- T = 10 MeV
- T = 15 MeV
- T = 20 MeV
- T = 5 MeV

Densities:
- $\rho = 0.10$ fm$^{-3}$
- $\rho = 0.20$ fm$^{-3}$
- $\rho = 0.30$ fm$^{-3}$
- $\rho = 0.40$ fm$^{-3}$
- $\rho = 0.50$ fm$^{-3}$

K-vectors:
- $k = 0$
- $k = k_F$
- $k = 2k_F$
Momentum distributions

\[n(k) = \langle \hat{a}_k^\dagger \hat{a}_k \rangle = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} A(k, \omega) f(\omega) \]
Thermodynamics of correlated nucleons

Free energy: \(F(\rho, T) = E - TS \)

- Energy (GMK sum rule)

\[
E^{GMK} = \sum_k \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \left\{ \frac{k^2}{2m} + \omega \right\} A(k, \omega)f(\omega)
\]

- Entropy

\[S = ??? \]

- Can one compute \(S \) from the one-body propagator?
- Does fragmentation affect the TD properties?
Luttinger-Ward formalism

Luttinger and Ward, PR 118,1417 (1960)

- Non-perturbative LW functional for the partition function

\[\ln Z\{G\} = \tilde{\text{Tr}} \ln \left(-G^{-1} \right) + \tilde{\text{Tr}} \Sigma G - \Phi\{G\} \]

- \(\Phi\)-functional such that:

\[\frac{\delta \ln Z}{\delta G} \bigg|_{G_0} = 0 \quad \Rightarrow \quad \Sigma\{G\} = \frac{\delta \Phi}{\delta G} \bigg|_{G_0} \]

Baym, PR 127,1391 (1962)

- Thermodynamically consistent
Luttinger-Ward formalism

Luttinger and Ward, PR 118, 1417 (1960)

- Non-perturbative LW functional for the partition function

\[
\ln Z\{G\} = \tilde{\text{Tr}} \ln \left[- G^{-1} \right] + \tilde{\text{Tr}} \Sigma G - \Phi\{G\}
\]

- \(\Phi\)-functional such that:

\[
\left. \frac{\delta \ln Z}{\delta G} \right|_{G_0} = 0 \quad \Rightarrow \quad \Sigma\{G\} = \left. \frac{\delta \Phi}{\delta G} \right|_{G_0}
\]

Baym, PR 127, 1391 (1962)

- Thermodynamically consistent
Luttinger-Ward formalism

Luttinger and Ward, PR 118, 1417 (1960)

- Non-perturbative LW functional for the partition function

\[\ln Z\{G\} = \tilde{\text{Tr}} \ln \left[-G^{-1} \right] + \tilde{\text{Tr}} \Sigma G - \Phi\{G\} \]

- \(\Phi\)-functional such that:

\[\Phi \]
\[\frac{1}{2} \]
\[\frac{1}{4} \]
\[\frac{1}{N_f} \]

\[\Sigma = \frac{\delta \Phi}{\delta G} \]

Baym, PR 127, 1391 (1962)

- Thermodynamically consistent
Luttinger-Ward formalism

Luttinger and Ward, PR 118,1417 (1960)

- Non-perturbative LW functional for the partition function

\[\ln Z\{G\} = \tilde{\text{Tr}} \ln \left[-G^{-1} \right] + \tilde{\text{Tr}} \Sigma G - \Phi\{G\} \]

- \(\Phi\)-functional such that:

\[\Phi \quad \frac{1}{2} \quad \frac{1}{4} \quad \frac{1}{N_f} \]

\[\Sigma = \frac{\delta \Phi}{\delta G} \]

Baym, PR 127,1391 (1962)

- Thermodynamically consistent
Entropy within the LW formalism

\[S = \left. \frac{\partial T \ln Z}{\partial T} \right|_\mu = S^{DQ} + S' \]

- Dynamical quasi-particle entropy

\[S^{DQ} = \sum_k \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \sigma(\omega) B(k, \omega) \]

with the statistical factor \(\sigma \) and the \(B \) spectral function:

\[\sigma(\omega) = -\left\{ f(\omega) \ln[f(\omega)] + [1 - f(\omega)] \ln[1 - f(\omega)] \right\} \]

\[B(k, \omega) = A(k, \omega) \left[1 - \frac{\partial \text{Re} \Sigma(k, \omega)}{\partial \omega} \right] + \frac{\partial \text{Re} G(k, \omega)}{\partial \omega} \Gamma(k, \omega) \]

- Higher order entropy ⇒ neglected at low \(T \)'s

Carneiro and Pethick, PR 11,1106 (1975)

\[S' = -\frac{\partial}{\partial T} T \Phi\{G\} + \sum_k \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \frac{\partial f(\omega)}{\partial T} A(k, \omega) \text{Re} \Sigma(k, \omega) \]

Arnau Rios Huguet (NSCL)
Entropy within the LW formalism

\[S = \left. \frac{\partial T \ln Z}{\partial T} \right|_\mu = S^{DQ} + S' \]

- Dynamical quasi-particle entropy

\[S^{DQ} = \sum_k \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \sigma(\omega) \mathcal{B}(k, \omega) \]

with the statistical factor \(\sigma \) and the \(\mathcal{B} \) spectral function:

\[\sigma(\omega) = - \left\{ f(\omega) \ln [f(\omega)] + [1 - f(\omega)] \ln [1 - f(\omega)] \right\} \]

\[\mathcal{B}(k, \omega) = A(k, \omega) \left[1 - \frac{\partial \text{Re} \Sigma(k, \omega)}{\partial \omega} \right] + \frac{\partial \text{Re} G(k, \omega)}{\partial \omega} \Gamma(k, \omega) \]

- Higher order entropy \(\Rightarrow \) neglected at low \(T \)'s

Carneiro and Pethick, PR 11,1106 (1975)

\[S' = - \frac{\partial}{\partial T} T \Phi \{ G \} + \sum_k \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \frac{\partial f(\omega)}{\partial T} A(k, \omega) \text{Re} \Sigma(k, \omega) \]
Entropy within the LW formalism

\[S = \frac{\partial T \ln Z}{\partial T} \bigg|_{\mu} = S^{DQ} + S' \]

- Dynamical quasi-particle entropy

\[S^{DQ} = \sum_k \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \sigma(\omega) B(k, \omega) \]

with the statistical factor \(\sigma \) and the \(B \) spectral function:

\[\sigma(\omega) = -\left\{ f(\omega) \ln [f(\omega)] + [1-f(\omega)] \ln [1-f(\omega)] \right\} \]

\[B(k, \omega) = A(k, \omega) \left[1 - \frac{\partial \Re \Sigma(k, \omega)}{\partial \omega} \right] + \frac{\partial \Re G(k, \omega)}{\partial \omega} \Gamma(k, \omega) \]

- Higher order entropy \(\Rightarrow \) neglected at low \(T \)'s

Carneiro and Pethick, PR 11,1106 (1975)

\[S' = -\frac{\partial}{\partial T} T \Phi \{ G \} + \sum_k \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \frac{\partial f(\omega)}{\partial T} A(k, \omega) \Re \Sigma(k, \omega) \]
Entropy within the LW formalism

\[S = \left. \frac{\partial T \ln Z}{\partial T} \right|_\mu = S^{DQ} + S' \]

- Dynamical quasi-particle entropy

\[S^{DQ} = \sum_k \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \sigma(\omega) B(k, \omega) \]

with the statistical factor \(\sigma \) and the \(B \) spectral function:

\[\sigma(\omega) = -\left\{ f(\omega) \ln[f(\omega)] + [1 - f(\omega)] \ln[1 - f(\omega)] \right\} \]

\[B(k, \omega) = A(k, \omega) \left[1 - \frac{\partial \text{Re} \Sigma(k, \omega)}{\partial \omega} \right] + \frac{\partial \text{Re} \ G(k, \omega)}{\partial \omega} \Gamma(k, \omega) \]

- Higher order entropy \(\Rightarrow \) neglected at low \(T \)'s

Carneiro and Pethick, PR 11,1106 (1975)

\[S' = -\frac{\partial}{\partial T} T \Phi \{ G \} + \sum_k \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \frac{\partial f(\omega)}{\partial T} A(k, \omega) \text{Re} \Sigma(k, \omega) \]
B spectral function

$\rho = 0.16 \text{ fm}^{-3}, T = 10 \text{ MeV}$

- B has a larger quasi-particle peak
- B has less strength at large energies
- Fragmentation of the qp peak plays a small role
Different approximations

\[S^{DQ} = \sum_k \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \sigma(\omega) B(k, \omega) \]

\[S^{QP} = \sum_k \int_{-\infty}^{\infty} d\omega \sigma(\omega) \delta[\omega - \varepsilon_{SCGF}(k)] \]

\[S^{BHF} = \sum_k \int_{-\infty}^{\infty} d\omega \sigma(\omega) \delta[\omega - \varepsilon_{BHF}(k)] \]

- \(S^{DQ} \sim S^{QP} \Rightarrow \text{width effects unimportant} \)
- \(S^{BHF} \text{ within a } 15\%, S^A \text{ within a } 30\% \)
- \(S^{NK} \text{ too large} \)
- Different lineal slopes \(\Rightarrow \text{different } N(0)'s \)
Thermodynamics of correlated nucleons

Free energy "recipe": \(F = E^{GMK} - TS^{DQ} \)

- Energy (GMK sum rule)
 \[
 E^{GMK} = \sum_k \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \frac{1}{2} \left\{ \frac{k^2}{2m} + \omega \right\} A(k, \omega)f(\omega)
 \]

- Entropy (LW formalism)
 \[
 S^{DQ} = \sum_k \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \sigma(\omega)B(k, \omega)
 \]

- TD consistency
 \[
 \mu = \frac{\partial F}{\partial \rho} \quad \text{vs.} \quad \rho = \nu \int \frac{d^3k}{(2\pi)^3} n(k, \tilde{\mu})
 \]
Thermodynamical Properties of Nuclear Matter

Thermodynamical consistency

- SCGF + LW yields $\mu \sim \tilde{\mu}$
- BHF violates HvH theorem by 20 MeV
- Far from correct saturation

$$\mu = \frac{\partial F}{\partial \rho} \iff \rho = \nu \int \frac{d^3k}{(2\pi)^3} n(k, \tilde{\mu})$$
Liquid-gas phase transition

\[p = \rho (\tilde{\mu} - F/A) \]

- Spinodal zone related to mechanical instability
- Maxwell construction sets phase coexistence
Liquid-gas phase transition

- $T_{c}^{BHF} \gg T_{c}^{SCGF}$
- Very different critical behaviour!
- Upper estimate of finite nuclei T_{c}
Summary

- The SCGF scheme is a consistent framework for nuclear many-body calculations at finite temperatures.
- The LW formalism can be used to find the TD properties of a many-body system from the one-body propagator.
- First time that the correlated entropy is computed for nuclear matter.
- Different realistic approaches lead to different $T_c \Rightarrow$ room for improvement!
Summary

- The SCGF scheme is a consistent framework for nuclear many-body calculations at finite temperatures.
- The LW formalism can be used to find the TD properties of a many-body system from the one-body propagator.
- First time that the correlated entropy is computed for nuclear matter.
- Different realistic approaches lead to different $T_c \Rightarrow$ room for improvement!
Summary

- The SCGF scheme is a consistent framework for nuclear many-body calculations at finite temperatures.
- The LW formalism can be used to find the TD properties of a many-body system from the one-body propagator.
- First time that the correlated entropy is computed for nuclear matter.
- Different realistic approaches lead to different $T_c \Rightarrow$ room for improvement!
Summary

- The SCGF scheme is a consistent framework for nuclear many-body calculations at finite temperatures.
- The LW formalism can be used to find the TD properties of a many-body system from the one-body propagator.
- First time that the correlated entropy is computed for nuclear matter.
- Different realistic approaches lead to different \(T_c \) ⇒ room for improvement!
Outlook

- Dependence on the 2-body NN potential
- Inclusion of 3-body effects
- Different methods to obtain the TD properties of the system
- ρ and T dependences of the microscopic properties
- Isospin asymmetry and its consequences
- Pairing phase transition beyond quasi-particle approach
- Extension to time-dependent systems (HIC)
Thank you!
For further reading I

T. Frick and H. Müther,
Self-consistent solution to the nuclear many-body problem at finite temperature,

T. Frick, H. Müther, A. Rios, A. Polls and A. Ramos,
Correlations in hot asymmetric nuclear matter,

A. Rios, A. Polls and H. Müther,
Sum rules of single-particle spectral functions in hot asymmetric nuclear matter,

Realistic NN interactions

NN interaction properties

- NN scattering phase-shifts
- Deuteron phenomenology
 - Bound state
 - Tensor component
- Different phase-shift equivalent potentials
 CDBONN, Av18, etc.
Analytical continuation

- Spectral decomposition of Matsubara coefficients

\[G(k, z_\nu) = \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \frac{A(k, \omega')}{z_\nu - \omega'} \]

- Analytical continuation

\[G(k, z_\nu) \rightarrow G(k, z) \]

- Can be done under certain assumptions

- Relation to the retarded propagator

\[G(k, z) = \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \frac{A(k, \omega')}{z - \omega'} \]

\[\rightarrow \omega + i\eta \]

\[G^R(k, \omega) = \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \frac{A(k, \omega')}{\omega - \omega' + i\eta} \]
Analytical continuation

- Spectral decomposition of Matsubara coefficients

\[G(k, z_\nu) = \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \frac{A(k, \omega')}{z_\nu - \omega'} \]

- Analytical continuation

\[G(k, z_\nu) \xrightarrow{??} G(k, z) \]

- Can be done under certain assumptions

- Relation to the retarded propagator

\[G(k, z) = \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \frac{A(k, \omega')}{z - \omega'} \xrightarrow{z \rightarrow \omega + i\eta} G^R(k, \omega) = \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \frac{A(k, \omega')}{\omega - \omega' + i\eta} \]
Depletion

- T dependence $\Rightarrow f(\omega)$
- ρ dependence \Rightarrow correlations
- Measure of both thermal and dynamical correlations
Correlated and non-correlated $n(k)$

- Less populated at low k
- More populated at high k
- Strong fall-off near k_F

$r = 0.32$ fm$^{-3}$, $T = 5$ MeV
B spectral function

- Different ρ and T dependence
- High energy tails measure importance of correlations
Mean-field to correlated energy ratios

Kinetic energy $\Rightarrow \rho$ and T independent
Potential energy \Rightarrow large modification
Free energy and $\tilde{\mu}$

F/A minimum disappears with $T \Rightarrow T_{fl}$

T_c where F/A looses inflexion point

μ and $\tilde{\mu}$ coincide within 2 MeV