RPMBT14 - Barcelona, 16-20 July, 2007

-1-

Localization and glassiness of ultracold bosons in optical lattices

Tommaso Roscilde

Max-Planck Institute for Quantum Optics, Garching (Germany)

- Disorder through unequal Bose-Bose mixtures in optical lattices;
- Out-of-equilibrium Anderson localization;
- Glassiness;

Many-body physics in optical lattices

- Optical potential: laser standing wave
- Ultracold atoms (*e.g.* alkali atoms starting from a BEC)
- Upon adiabatic loading into a deep lattice: ideal realization of a **single-band Bose-Hubbard model**;

D. Jaksch et al., Phys. Rev. Lett. 81, 3108 (1998).

Many-body physics in optical lattices

• Dimensionality

- 3D: M. Greiner et al., Nature 415, 39 (2002)
 2D: I.B. Spielman et al., Phys. Rev. Lett. 98, 080404 (2007)
 1D: T. Stöferle et al., Phys. Rev. Lett. 92, 130403 (2004)
- Interactions
 - J/U tuned by the laser intensity;
 - *U* tuned by a magnetic field (Feshbach resonance);

How about disorder?

• Suppression of expansion after trap release

J. Lye et al., Phys. Rev. Lett. 95, 070401 (2005); *D. Clément et al., Phys. Rev. Lett.* 95, 170409 (2005); *C. Fort et al., Phys. Rev. Lett.* 95, 170410 (2005); *T. Shulte et al., Phys. Rev. Lett.* 95, 170411 (2005).

• Suppression of expansion after trap release

J. Lye et al., Phys. Rev. Lett. 95, 070401 (2005); *D. Clément et al., Phys. Rev. Lett.* 95, 170409 (2005); *C. Fort et al., Phys. Rev. Lett.* 95, 170410 (2005); *T. Shulte et al., Phys. Rev. Lett.* 95, 170411 (2005).

• Anderson localization ?

• Anderson localized wave-function

• Anderson localized wave-function

• laser speckles are 'big' optical defects in the trap;

• Anderson localized wave-function

 $d_{
m speckle} \gg \xi$

- laser speckles are 'big' optical defects in the trap;
 - ξ = healing length $\sim 1/\sqrt{m}$

• Anderson localized wave-function

- laser speckles are 'big' optical defects in the trap;
 - $d_{\text{speckle}} \gg \xi$ ξ = healing length $\sim 1/\sqrt{m}$
- classical trapping in potential valleys rather than quantum localization

Disorder realized by a secondary species

A *secondary species* of bosons/fermions is randomly trapped in the minima of the optical lattice (negligible tunneling).

U. Gavish and Y. Castin, PRL 95, 020401 (2005);

B. Paredes, F. Verstraete, and J.I. Cirac, PRL 95, 140501 (2005).

Unequal mixtures in optical lattices

EXPERIMENTS

• Bose-Bose mixtures

⁸⁷Rb in different hyperfine states O. Mandel et al., Phys. Rev. Lett. 91, 010407 (2003); ...
 ⁸⁷Rb-³⁹K J. Catani et al., arXiv:0706.2781

• **Bose-Fermi mixtures**: ⁸⁷Rb-⁴⁰K

K. Günther et al., Phys. Rev. Lett. 96, 180402 (2006); S. Ospelkaus et al., ibid. 96, 180403 (2006); ...

THEORY

• Bose-Bose mixtures

A. Kuklov et al. Phys. Rev. Lett. 92, 050402 (2004); *E. Altman et al., New J. Phys.* 5, 113 (2003); *A. Isacsson et al., Phys. Rev. B* 72, 184507 (2005); *L.-M. Duan et al., Phys. Rev. Lett.* 91, 090402 (2003);

• Bose-Fermi mixtures

H. P. Büchler et al., Phys. Rev. Lett. 91, 130404 (2003); M. Cramer et al., Phys. Rev. Lett. 93, 190405 (2004); L. Mathey et al., Phys. Rev. Lett. 93, 120404 (2004); V. Ahufinger et al., Phys. Rev. A 72, 063616 (2005); L. Pollet et al., Phys. Rev. Lett. 96, 190402 (2006);

It can be realized in ⁸⁷Rb with circularly polarized light

E.g. a-bosons = $|F = 1, m_F = -1\rangle$ *b*-bosons = $|F = 2, m_F = -2\rangle$

Largely different coupling to different circular polarization depending on the hyperfine state /laser wavelength.O. Mandel et al., Phys. Rev. Lett. 91, 010407 (2003)

Two shifted optical lattices

B. Paredes, F. Verstraete, and J.I. Cirac, PRL 95, 140501 (2005).

Freezing one species

B. Paredes, F. Verstraete, and J.I. Cirac, PRL 95, 140501 (2005).

Bringing the species into interaction

B. Paredes, F. Verstraete, and J.I. Cirac, PRL 95, 140501 (2005).

Two-boson Bose-Hubbard model (2BHM)

$$\mathcal{H} = \mathcal{H}_{a} + \mathcal{H}_{b} + \mathcal{H}_{ab} \qquad \mathcal{H}_{a} = J_{a} \sum_{\langle ij \rangle} \left(a_{i} a_{j}^{\dagger} + \text{h.c.} \right) + \frac{U_{a}}{2} \sum_{i} n_{a,i} (n_{a,i} - 1)$$
$$\mathcal{H}_{b} = J_{b} \sum_{\langle ij \rangle} \left(b_{i} b_{j}^{\dagger} + \text{h.c.} \right) + \frac{U_{b}}{2} \sum_{i} n_{b,i} (n_{b,i} - 1)$$
$$\mathcal{H}_{ab} = U_{ab} \sum_{i} n_{a,i} n_{b,i}$$

no doubly occupied sites \rightarrow exactly solvable in D = 1through Jordan-Wigner transformation

B. Horstmann, J. I. Cirac, and TR, arXiv:0706.0823

B. Horstmann, J. I. Cirac, and TR, arXiv:0706.0823

• Freeze the b-bosons in a *superfluid* state;

 $V_{\rm dis}(i) = U_{ab} n_{b,i}$

B. Horstmann, J. I. Cirac, and TR, arXiv:0706.0823

• Freeze the b-bosons in a *superfluid* state;

 $V_{\rm dis}(i) = U_{ab} n_{b,i}$

• density fluctuations in the superfluid $\Leftrightarrow n_{b,i}$ are random variables;

• Freeze the b-bosons in a *superfluid* state;

 $V_{\rm dis}(i) = U_{ab} n_{b,i}$

- density fluctuations in the superfluid $\Leftrightarrow n_{b,i}$ are random variables;
- **correlated** fluctuations

$$\langle (n_{b,i} - \bar{n}_b)(n_{b,i+r} - \bar{n}_b) \rangle \sim r^{-2}$$

• Freeze the b-bosons in a *superfluid* state;

 $V_{\rm dis}(i) = U_{ab} n_{b,i}$

- density fluctuations in the superfluid $\Leftrightarrow n_{b,i}$ are random variables;
- **correlated** fluctuations

$$\langle (n_{b,i} - \bar{n}_b)(n_{b,i+r} - \bar{n}_b) \rangle \sim r^{-2}$$

• Study of Anderson localization in a correlated random potential

Steady-state Anderson localization

B. Horstmann, J. I. Cirac, and TR, arXiv:0706.0823

Exponential localization after expansion

Steady-state Anderson localization

B. Horstmann, J. I. Cirac, and TR, arXiv:0706.0823

Suppression of phase correlations $\rho_{i,i+r} = \langle a_i^{\dagger} a_{i+r} \rangle$

 What if we try to adiabatically load two unequal bosons (J_a ≫ J_b) in an optical lattice?

 What if we try to adiabatically load two unequal bosons (J_a ≫ J_b) in an optical lattice?

• Do localization phenomena survive?

Weakly repulsive *a* particles, strong *b*-*b* and *a*-*b* repulsion

$$igg[U_{ab} = U_b \gg U_a \quad n_a = 1$$
 , $n_b < 1 igg]$

Classical ground state $(J_a, J_b = 0)$

Weakly repulsive *a* particles, strong *b*-*b* and *a*-*b* repulsion

$$igg[U_{ab} = U_b \gg U_a \quad n_a = 1$$
 , $n_b < 1 igg]$

Classical ground state $(J_a, J_b = 0)$

Weakly repulsive *a* particles, strong *b*-*b* and *a*-*b* repulsion

$$igg[U_{ab} = U_b \gg U_a \quad n_a = 1$$
 , $n_b < 1 igg]$

Weakly repulsive *a* particles, strong *b*-*b* and *a*-*b* repulsion

$$\left(U_{ab} = U_b \gg U_a \quad n_a = 1, n_b < 1
ight)$$

Weakly repulsive *a* particles, strong *b*-*b* and *a*-*b* repulsion

$$igg[U_{ab} = U_b \gg U_a \quad n_a = 1, n_b < 1 igg]$$

Weakly repulsive *a* particles, strong *b*-*b* and *a*-*b* repulsion

$$igg[U_{ab} = U_b \gg U_a \quad n_a = 1$$
 , $n_b < 1 igg]$

Excited state
$$\Delta E = U_{ab} - U_a$$

Weakly repulsive *a* particles, strong *b*-*b* and *a*-*b* repulsion

$$igg[U_{ab} = U_b \gg U_a \quad n_a = 1, n_b < 1 igg]$$

Excited state

Weakly repulsive *a* particles, strong *b*-*b* and *a*-*b* repulsion

$$igg[U_{ab} = U_b \gg U_a \quad n_a = 1, n_b < 1 igg]$$

Classical limit $J_a, J_b \rightarrow 0$: glassy energy landscape

- Exponentially many degenerate ground states (~ $L!/((N_a/2)!N_b!)$)
- All separated by energy barriers $\leq (U_{ab} U_a)$.

Slow dynamics

Energy barriers suppress thermal hopping / quantum tunneling

•
$$J_a \approx 2 \text{ kHz}, J_b \approx 0.4 \text{ kHz}$$

•
$$U_a = J_a, U_{ab} = 5J_a$$

 $\tau = \hbar/J_{\mathrm{eff}} \sim 36 \,\mathrm{ms}$ for ⁸⁷Rb

Quantum correction $J_a, J_b \ll U_{ab}, U_b$: immiscibility

Quantum surface tension: $\sigma_q \sim J_a^2, J_b^2$ analogous to immiscible fluids

Quantum correction $J_a, J_b \ll U_{ab}, U_b$: immiscibility

Quantum surface tension: $\sigma_q \sim J_a^2, J_b^2$ analogous to immiscible fluids

Quantum correction $J_a, J_b \ll U_{ab}, U_b$: immiscibility

Quantum surface tension: $\sigma_q \sim J_a^2, J_b^2$ analogous to immiscible fluids

TR and J. I. Cirac, Phys. Rev. Lett. 98, 190402 (2007)

- Stochastic Series Expansion in a mixed ensemble (*a* grand-canonical, *b* canonical) and in the canonical ensemble; *double-worm* update;
- Trapping of the simulation in metastable states;
- Probe the metastable states as **fictitious equilibrium states**;

 $U_a = J_a$ $U_b = U_{ab} = 5J_a$ $J_b = 0.2J_a$ $N_a = L$ $N_b = L/2;$

Moulding the quantum glass

Changing the U_a repulsion through a Feshbach resonance

MCS: 500

MCS: 50000

MCS: 100000

MCS: 120000

Tommaso Roscilde (MPQ), July 16th, 2007

Superfluidity of a fraction of *a* bosons along with persistent glassiness of *b* bosons and the rest of *a* bosons

SUPERGLASS

cfr. supercooled ⁴He: M. Boninsegni, N. Prokof'ev, and B. Svistunov, Phys. Rev. Lett. 96, 105301 (2006)

• Realization of a *mesoscopic quantum glass;*

[see also C. Menotti et al., Phys. Rev. Lett. 98, 235301 (2007)]

- Realization of a *mesoscopic quantum glass;* [see also C. Menotti et al., Phys. Rev. Lett. 98, 235301 (2007)]
- Are **quantum emulsion** and **superglass** thermodynamically stable phases? Maybe in *D* = 2?

- Realization of a *mesoscopic quantum glass;* [see also C. Menotti et al., Phys. Rev. Lett. 98, 235301 (2007)]
- Are **quantum emulsion** and **superglass** thermodynamically stable phases? Maybe in *D* = 2?
- Can we explore a thermal glass transition?

- Realization of a *mesoscopic quantum glass;* [see also C. Menotti et al., Phys. Rev. Lett. 98, 235301 (2007)]
- Are **quantum emulsion** and **superglass** thermodynamically stable phases? Maybe in *D* = 2?
- Can we explore a thermal glass transition?

• Optical lattices have a unique advantage TIME SCALES FOR RELAXATION CAN BE TUNED!

Thanks to...

Birger Horstmann

Ignacio Cirac

and, for important discussions, to

Stephan Dürr, Thomas Volz, Niels Syassen, Dominik Bauer, and Gerhard Rempe @ MPQ;

B. Horstmann, J. I. Cirac, and TR, arXiv:0706.0823 TR and J. I. Cirac, Phys. Rev. Lett. **98**, 190402 (2007)

Quantum emulsion in a trap

Bose Mixture,
$$N_a = N_b = 25$$
, $U_a = 2J_a$, $U_b = U_{ab} = 5J_a$, $J_b = 0.2J_a$, $V_T = 0.01J_a$, $\beta J_a = 24$, L=65

