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ABSTRACT 

I interpret MPS (moving particle semi-implicit method) as a sort of density method for moving surface. 

A disadvantage of the density method is that the diffusion of the density calculated by averaging in the 

element causes difficulty to conserve the mass. In contrast, MPS satisfies the mass conservation. The 

density method is very suitable for FEM, leading to the concept that “fusional method” would be useful. 

The tool of special mention in MPS correspond to the weight function to calculate “the particle number 

density”. Since the weight function is a Kernel function, the fusional method uses a novel Kernel 

function as the weight function of MPS. The masses (particles) occupy the position on vertex node of 

the tetrahedral elements, and the mesh must be recomposed for the time step advance by using any 

mesh generation technique, but before mesh recomposition, density  is redistributed to satisfy the 

continuity equation. The method is basically made up of FEM, and I apply Helmholtz-decomposition 

(abbreviation: H-d) using ∇- and uT-elements for displacement in formula u=∇+uT (T:Transverse). 

Kernel function: The particle mass-i is allotted as densities by form (1) in inverse ratio of CV (control 

volume) to individual elements-j sharing the node-i. (: mass-i, V: CV for node-i, Vi,j: part-j of V ) 
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Density function in element-j: linear function with parameter values j,i on vertex node-i. 

Continuity equation: 0
Dt

D
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 2 , where velocity U and ∇ are given, and satisfy the equation. 

Navier-Stokes equation: P
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( , where  is viscosity of fluid, and P is 

pressure in linear element, and therefor is used to evaluate the incompressibility of the advection term. 

Semi-explicit method: Time axially central difference method is used to calculate {U, acc.}n on time 

step-n, and firstly  predict un+1 by Taylor expansion using x=tU by iteration method by form (2) to 

obtain initial values for implicit method, where u is  2nd order element, also to induce surface tension. 

Predictor:    nnnn t
t )(

2
)(

2

2

n

2

n

1

x

u

x

u
Uuu









    






































)
2

(
12

,
2

11
2

2

11

n

nn

11

n

t
P

t

0P
tt

nnnnn

nn

uuuuu

UU
uuu

U






 (2) 

I will explain how to introduce surface tension for variable density in the presentation, also about 

incompressibility and homogeneousness (∇∇2=0) of the element. 

The proposed method is applicable to the solid, i.e., to solid particles and moving FEM models as well. 

Thus, the method enables the numerical simulation based on the finite deformation theory. 

Equilibrium eq. of solid: 
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( , where G is shearing rigidity, is Pisson’s 

ratio and u is displacement vector. 
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