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Summary. A general approach to realization of models of elasticity, plasticity and fracture of 

heterogeneous materials within the framework of particle-based discrete element method is 

proposed in the paper. The approach is based on constructing many-body forces of particle 

interaction, which provide response of particle ensemble correctly conforming to the response 

(including elastic-plastic behavior and fracture) of simulated solids. For correct modeling of 

inelastic deformation and failure of geological materials and media at "high" structural scales 

(relative to the scale of grains) an implementation of dilatational Nikolaevsky's model of 

plasticity of rocks within the framework of mathematical formalism of discrete element 

method is proposed. Perspectives of multiscale modeling of geological materials from grain-

related scale up to macroscopic scale within the same numerical technique (DEM) are 

discussed. 
 

 

1 INTRODUCTION 

At present time numerical particle-based methods, belonging to the group of discrete 

element methods (DEM), are widely used for the study of deformation and fracture of weakly 

bonded and loose media as well as of brittle materials (including rocks). The main feature and 

advantage of DEM is an “inherent ability” to directly simulate fracture (including multiple 

fracture) and mass mixing phenomena. This determined primary application of this numerical 

technique to study the features and mechanisms of material response at the “microscale”, i.e. 

at the scale of structural elements of considered system (grains of sand or rock, powder 

particles, blocks in zones of localized intensive fragmentation of massifs and so on). Such 

studies are crucial for understanding the basic (elementary) mechanisms of inelastic 

deformation and failure in block-structured media as well as for the construction of 

rheological models of complex media [1,2]. Such rheological models can be used for 

theoretical study of the behavior of hierarchically organized geological media at high 

structural scales (that is, such models serve as a basis of multiscale modeling). 

One of the most important fundamental problems in DEM, as well as in other methods of 

particles, is determination of the form of potential/force of particle interaction. The form and 
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parameters of forces of particle-particle interaction in many respects determine the “integral” 

response of the ensemble, including its compliance with the response of the simulated 

medium. It has to be noted that microscale description of loose or consolidated brittle 

materials (including rocks) within the DEM is conventionally done with use of pair-wise 

models of element-element interaction (including pair-wise formulation of fracture criteria) 

[1,3]. Such simplification of element-element interaction strongly limits fields of application 

of DEM. In particular, application of pair-wise models of interaction between discrete 

elements to study loose material at macroscale often fails. Moreover, DEM-based description 

of consolidated rocks at meso- and macroscopical scales with use of pair-wise interaction 

potentials is not capable to take into account damage generation phenomena at spatial scales 

lower than discrete element size. As a consequence rock and soil behavior at “high” 

spatial/structural scales (with respect to grain-related scale) is conventionally described with 

use of numerical methods of continuum mechanics (FEM, FDM and so on). The main 

advantage of these methods is a capability to implement various (including multiparametric) 

rheological models. 

Research conducted by the authors has shown that an adequate description of deformation 

and fracture of heterogeneous materials at different spatial scales is possible with the use of 

many-body potentials/forces of discrete element interaction. The authors propose an approach 

to building relationships for the central and tangential potential forcesof particle interaction. 

The structure of the expression for interaction force is analogous to the structure of 

interatomic potentials in the embedded-atom model. This approach is implemented in the 

framework of the movable cellular automaton method (MCA), which is a new and intensively 

developed representative of the group of computational methods of particles [4,5]. The paper 

demonstrates the main theses of the developed approach and methods of implementation of 

various rheological models of heterogeneous materials. In particular, implementation of 

Nikolaevsky’s model of plasticity (the generalized Drucker-Prager plasticity model with 

Mises-Schleicher criterion and non-associated flow law) within the DEM is proposed for an 

adequate description of inelastic deformation of hierarchically organized geological medium. 

A way to implement multiparametric fracture criteria within the DEM for the correct 

modeling of the fracture in complex geological media at "high" structural scales (relative to 

the spatial scale of the elementary structural elements) is proposed as well. 

2 GENERAL FORMALISM OF MANY-BODY INTERACTION 

Proposed general form of many-body forces of interaction between discrete elements is 

borrowed from the form of interatomic forces calculated on the basis of embedded-atom 

method. In the framework of embedded-atom model the general expression for potential 

energy of atom i contains a pair interaction potential  as a function of distance rij between 

atoms i and j and a “density-dependent” embedding function F (here it depends on electron 

charge density i ): 

      
 i

i
ij

iji FrRE  (1) 

where  



ij

ijji r  is a sum of contributions of neighbors j to local value of density at the 

location of atom i. By analogy with this expression the following general form of notation of 
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the expression for the force iF


 acting on discrete element i from surroundings is proposed: 
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This force is written as a superposition of pair-wise constituents ij
pairF


 depending on spatial 

position/displacement of element i with respect to nearest neighbor j and of volume-

dependent constituent iF


 connected with combined influence of nearest surroundings of the 

element. 

When simulating locally isotropic materials/media the volume-dependent contribution iF


 

can be expressed in terms of pressure Pi in the volume of discrete element i as follows [5]: 
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(3) 

where Sij is square of area of interaction (contact) of elements i and j, ijn


 is a unit vector 

directed along the line between mass centres of considered elements, Ai is a material 

parameter for the element i (in general case each element simulates a material fragment with 

unique phase or chemical composition and is characterized by a unique value of material 

parameter A). 

In such a formulation the right part of the expression (2) can be reduced to the sum of 

forces of interaction in pairs of elements and divided into central ( ij
nF


) and tangential ( ij
tF


) 

constituents: 

         



iii N

j

ij
t

ij
n

N

j
ij

shear
is

ij
tpairijijiiij

ij
npair

N

j
ijijii

ij
pairi FFtlFnSPAhFnSPAFF

11
,,

1


 

(4) 

where ij
npairF ,  and ij

tpairF ,  are central and tangential components of pair-wise interaction force 

that depend on the values of element-element overlap hij and relative shear displacement shear
ijl  

( shear
ijl  is calculated taking into account rotations of both elements of the pair [1,4]), ijt


 is a 

unit vector which is oriented perpendicular to the line joining the centers of mass of elements 

i and j. For conveniences hereinafter interaction forces will be considered in specific units (ij 

and ij) obtained by dividing the total values ( ij
nF


 and ij
tF


 correspondingly) by Sij. In terms of 

specific interaction forces ij and ij the expression (4) takes the following form: 

 
 


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


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shear
ij
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ijij

iiij
pair
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(5) 

where pair
ij  and pair

ij  are pair-wise components of specific interaction forces. Specific forces 

ij and ij can be interpreted as forces of response of the element (or movable cellular 

automaton) i to the impact of the neighbour j. In general case interacting elements i and j has 

different material properties. Therefore reaction forces pair
ij  and pair

ij  depend not on the total 

values of pair overlap and shear displacement but on contributions of the element i to total 
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values of these spatial parameters. Hereinafter such contributions will be considered in 

normalized units: 

   

   
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qql

ddqqh 22
 

(6) 

where symbol  hereinafter indicates increment of corresponding parameter during one time 

step t, qij and qji are the distances from mass centers of elements i and j to the center of area of 

interaction (qij+qji=rij; rij is the distance between mass centers of elements), d is size of element, 

i(j) and j(i) are central strains of discrete elements i and j in the pair, i(j) and j(i) are shear angles 

of discrete elements i and j in the pair (in the general case i(j)j(i) and i(j)j(i)). The law of 

distribution of total values hij and shear
ijl  between discrete elements i and j is inseparably linked 

with concrete form of pair wise constituents pair
ij  and pair

ij  and can be derived from the 

necessary requirement of satisfaction of Newton’s third law for interacting pairs of discrete 

elements (ij=ji and ij=ji): 
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(7) 

Equations (6)-(7) provides the basis for calculation of contributions of elements i and j (i(j) 

and j(i), i(j) and j(i)) to the total values of pair overlap and relative shear displacement as well 

as for calculation of the forces ij
nF


 and ij
tF


 of pair interaction.  

It is seen from (7) that an important problem in building many-particle interaction is 

definition of local value of pressure (Pi) in the volume of discrete element. Authors propose to 

use an approach to calculation of pressure Pi (or, what is the same – of mean stress) in the 

volume of the element i that is based on the computation of components of average stress 

tensor in the volume of the element [1]. In terms of specific central (ij) and tangential (ij) 

interaction forces the component i
  of average stress tensor in the volume of element i can 

be written as follows [1,6]: 
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(8) 

where , = x,y,z (XYZ is a laboratory system of coordinates), i is a current value of the 

volume of element i,  
ijn


 and  

ijt


 are projections of unit-normal and unit-tangential vectors 

onto the X-axis of lab coordinates. 

Calculated in this way the stress tensor components can be used to determine the pressure 

in the volume of discrete element as well as other tensor invariants, for example stress 

intensity: 

3
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The main advantage of the developed approach to building expressions for forces of 

interaction of discrete elements (or movable cellular automata) is a possibility to implement 

various rheological models of heterogeneous medium within the formalism of DEM [6].  

In particular, to adequately describe response of hierarchically organized geological 

medium at various structural/spatial scales with regard to the contributions of “embedded” 

structural scales of lower ranks, the two-parametric rheological model with non-associated 

plastic flow law and Dricker-Prager yield criterion (Nikolaevsky’s model) is widely used. 

Below is an implementation of this model within the framework of discrete element approach. 

3 DISCRETE ELEMENT INTERACTION FOR MODELING ELASTIC-PLASTIC 

MEDIUM 

3.1 Linearly elastic medium 

Response of isotropic material, which is under the stress state inside the limiting surface 

(in stress space), is conventionally described on the basis of generalized Hooke's law. The 

following notation of this law will be used hereinafter: 








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G
K

GG mean)21(2
 

(10) 

where , = x,y,z;  and  are diagonal components of stress and strain tensors;  and  

are off-diagonal components;   3zzyyxxmean   is mean stress; K is bulk modulus; G is 

shear modulus. 

It can be seen that the form and the matter of expressions (10) for diagonal and off-

diagonal stress tensor components are analogous to expressions (5) and (7) describing normal 

and tangential interaction of discrete elements. This leads to the simple idea to write down 

expressions for force response of element i to the impact of the neighbor j by means of direct 

reformulation of Hooke’s law relationships: 
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(11) 

where Gi and Ki are shear and bulk elastic moduli of material filling the element i, mean stress 
i
mean  is calculated using (9). Note that double shear modulus (2Gi) is used in the second 

expression of (11) instead of G in (10). This feature is concerned with the fact that relative 

tangential displacement of discrete elements leads to their rotations. Initiated rotation of the 

elements decreases twice the value of relative shear displacement in interacting pairs. 

Proposed relationships (11) for forces of the element response to the impact of the 

neighbor j provide implementation of the Hooke’s law for components i
  of average stress 

tensor in the volume of element i. This can be shown by substituting expressions (11) for 

respond force in (8). Detail description can be found in the paper [6]. 
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Relationships (11) make it possible to calculate central and tangential interaction of 

discrete elements, whose ensemble simulates isotropic elastic medium. Substituting (11) into 

(7) and taking into account (6) it is easy to obtain the system of expressions to calculate 

specific interaction forces in the pair i-j: 
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Here, relations for calculating the central and tangential interaction forces are written in 

incremental fashion (in hypoelastic form); “cur” and “pre” upper indexes mark values of 

specific reaction forces at the current step of integrating the equations of motion of discrete 

elements (or cellular automata); mean stress increments i
mean  and j

mean  are taken from 

previous time step or determined with use of predictor-corrector modification of a numerical 

scheme. Equations (12) are first solved for strain increments  ji ,  ij ,  ji  and  ij . 

Found values of strain increments are then substituted to calculate current values of specific 

forces ij and ij. 

Testing of the proposed model of element interaction by the example of elastic wave 

propagation showed that ensemble of discrete elements, which interact according to (12), 

demonstrates a “macroscopically” isotropic response, even with the regular packing of 

elements of the same size. Note that achieving isotropic response of regularly packed 

elements is a fundamental problem in conventional models of DEM that use approximation of 

two-particle interaction. 

3.2 Elastic-plastic medium (Nikolaevsky’s model of plastic flow) 

An important advantage of the proposed approach to building many-body interaction of 

discrete elements is a capability to realize various models of elasticity and plasticity within 

the framework of DEM (or MCA). In particular, non-associated plastic flow theory (namely, 

the generalized Drucker-Prager model with non-associated flow law within the limits of 

Nikolaevsky’s model) was implemented within DEM to simulate nonelastic mechanical 

response of brittle materials (including rock) at the mesoscopic or macroscopic structural 

scale. When constructing models of plasticity of geomaterials, it is necessary to take into 

account features of the mechanisms of relaxation of internal stresses. In contrast to metals and 

alloys, these mechanisms are associated with the formation and development of damages 

(cracks) of different ranks rather than with the movement of lattice defects. Under the 

simulation of geomaterials by ensemble of discrete elements the damages with a size 

comparable to or greater than the size of discrete element can be modeled directly through 
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breaking the bonds between linked (bonded) elements. The study of the dynamics of 

accumulation of such damages and their influence on the integrated response of the ensemble 

can be carried out in the framework of conventional models of linear-elastic interaction of 

discrete elements. At the same time, damages of smaller spatial scales must be taken into 

account implicitly by defining a model of plasticity (it is rather correct to speak about 

quasiplasticity) and selecting the appropriate structural form and parameters of yield criterion. 

In view of the features of functioning of the relaxation mechanisms in geomaterials 

(generation of damage is concerned with the formation of free surfaces and the emergence of 

a free volume) applied plasticity model must satisfy at least two conditions: 

1. Plasticity criterion must take into account the effect of the local pressure (compressive 

hydrostatic pressure prevents the spatial diversity of the atomic planes and thus hinders 

generation/development of damages and cracks). 

2. Plasticity model must take into account the effect of emergence of the free volume, that 

is to say, the possibility of inelastic volumetric deformation of the body. 

One of such kind of models is a model of Nikolaevsky that adequately takes into account 

above described requirements. In the framework of this model the criterion of reaching the 

limit of elasticity is the condition of Mises-Schleicher [7,8]:  

YJJ mean 



3

3 int
21 , 

(13) 

where mean and int are mean stress and stress intensity, Y is the elastic limit of the material 

under shear loading,  is proportional to the coefficient of internal friction. The main feature 

of Nikolaevsky’s model is a postulated linear dependence of plastic volume strain rate on 

plastic shear strain rate: 

pp
II 21 2  

(14) 

The coefficient of proportionality  is called the coefficient (rate) of dilatancy. 

Implementation of Nikolaevsky’s model within the framework of DEM/MCA method was 

done with use of radial return algorithm of Wilkins [9] (note that before this algorithm was 

adopted to the DEM formalism to implement the plastic flow theory with von Mises yield 

criterion to simulate plastic deformation of metals [6]). The gist of this numerical scheme 

consists in solving the elastic problem in the current step of integration of the equations of 

motion of the particles and the subsequent scaling (returning) potential forces of particle 

interaction in compliance with the necessary requirements of Nikolaevsky’s model for the 

values of local pressure and Mises-Schleicher criterion of plasticity [7]. 

Conventionally, radial returning of stresses is formulated in terms of the stress deviator 

D̂ : 

MDD  
ˆˆ , (15) 

where M is a coefficient of stress drop (stress scaling), D̂  is a stress deviator after solution of 

elastic problem at the current time step, D̂  is a scaled stress deviator. 

Being written in terms of stress, the algorithm of Wilkins for the applied model of 

plasticity can be presented in the following form: 
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  meanmean M   , (16) 

where 22 JJM  ,   is the Kronecker delta. Main requirements of the algorithm of 

Wilkins for the Nikolaevsky’s model concern the values of “relaxed” (scaled) first and second 

invariants of stress tensor [7]: 

 
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3
3 11 . 

 

The main problem in realization of the algorithm of Wilkins within the framework of DEM 

(or MCA) is formulation of correcting relations for element interaction forces that provide 

implementation of necessary conditions (17) for average stresses in the volume of discrete 

element. By analogy with the elastic problem the expressions for scaling specific central and 

tangential forces of response of the element i to the impact of the neighbor j can derived by 

direct reformulation of relations (16) for average stresses. So, implementation of the above 

described algorithm within the framework of DEM formalism is as follows. At the current 

step of integration of the equations of motion the forces of interaction of elements (automata) 

are calculated in the elastic approximation according to (12). After that the components of 

average stress tensor ( i

 ) are computed for all discrete elements of the ensemble. Next, the 

condition (13) is checked for each element. In the case of fulfillment of this condition for the 

element/automaton i the correction (scaling) of its response forces  
cur

ji
  and  

cur
ji

  in all pairs i-j 

is carried out as follows:  
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where     jiji  ,  are scaled values of specific response forces, 
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

3
 is a correction to 

the local (in the volume of element i) value of mean stress i
mean  calculated in the elastic 

approximation, Yi, i and i are instantaneous (current) values of model parameters for the 

material of element i. In the general case the model parameters in (18) are assumed to be 

functions of strain and strain rate. 

By analogy with elastic problem substitution of (18) in expression (8) for average stress 

tensor automatically provides reduction of its components to yield surface for the element i. 

This gives possibility to correctly simulate quasiplastic behavior of brittle materials (including 

rocks) with multiscale internal structure by the ensemble of discrete elements.  

Note that independent use of the expressions (18) for interacting elements i and j can lead 

to unequal values of respond forces ( jiij   and jiij  ) in the pair i-j. In view of the need 
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for implementation of Newton’s third law the current values of element interaction forces in 

(4) are calculated on the basis of the following proportion: 



















ij

ijjijiij
ijijij

ij
t

ij

ijjijiij
ijijij

ij
n

r

qq
SSF

r

qq
SSF

. 

(19) 

In the framework of the applied two-parametric Nikolaevsky's model of plastic flow the 

material rheological properties of discrete elements are assigned by the dependencies 

 msmsY  , ,  msms  ,  and  msms  , . Here 3int GKmeanms  is a combination of the 

first two invariants of strain tensor (this parameter can be conventionally called “Mises-

Schleicher deformation parameter”), ms  is a rate of change of this parameter. Note that the 

form of parameter ms  ensures the equality Gms 3  within the region of elastic 

deformation ( ms  can be considered as an analogue of equivalent strain in the conventional 

models of plasticity of metals with von Mises yield criterion). To construct the above 

mentioned dependencies of three listed model parameters, at least two types of mechanical 

tests (e.g. uniaxial compression and tension and/or pure shear) under various loading rates 

have to be held.  

4 MODELING FRACTURE WITH DEM-BASED FORMALISM 

One of the main advantages of particle-based methods in mechanics is the feasibility of 

direct simulation of fracture (including multiple fracture) of material through changing the 

state of a pair of particles (“linked” pair  “unlinked” pair). The criterion for pair state 

switching is normally the ultimate value of interaction force or the ultimate value of relative 

displacement [1,3]. The developed approach to the description of interaction of discrete 

elements (or movable cellular automata) in the many-body approximation makes it possible to 

apply various multiparametric ”force” fracture criteria (Drucker-Prager, Coulomb-Mohr, etc) 

as element-element bond fracture criteria. 

In the framework of classical formalism of discrete elements pair bond breakage occurs on 

the surface of their interface (at the area of interaction of the pair, in other words, at the 

contact area). Therefore applied "force" failure criterion (for example, the criterion of 

Drucker-Prager) must be calculated at the area of interaction of elements using the local stress 

tensor components identified at this area [6]. In the local coordinate system XY of the 

interacting pair i-j (Figure 1) components ij
yy   and ij

yx   of this local stress tensor are 

numerically equal to specific forces of central (ij) and tangential (ij) interaction of the 

elements (these forces are applied to the contact area Sij): 
















ij
ij

yx

ij
ij

yy . 

(20a) 

Other components ( ij
xx   and ij

zz  ) of the local stress tensor can be determined on the basis of 

linear interpolation of corresponding values for elements i and j ( i
xx   and j

xx  , i
zz   and 
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j
zz  ) to the area of interaction: 

























ij

ij
j
zzji

i
zzij

zz

ij

ij
j
xxji

i
xxij

xx

r

qq

r

qq

. 

(20b) 

where i
  and j


  are components of average stress tensor in the volume of elements i and 

j in the local coordinate system XY of the pair (these stresses result from transformation of 

average stresses i
  and j

  to local coordinates). 

 

Figure 1: Instantaneous coordinate system associated with the current spatial orientation of the pair i-j. 

Components ij


 , thus defined, can be used to calculate necessary invariants of stress 

tensor which then can be used to calculate current value of applied criterion of pair fracture. 

Below the example of bond breaking condition for the pair i-j with use of Drucker-Prager 

criterion is shown: 

    c
ij
mean

ij
aa  15.115.0

int . (21) 

where c is the corresponding threshold value for considered pair (value characterizing 

strength of cohesion/adhesion), tca   is a ratio of compressive strength (c) of the pair 

bond to tensile strength (t), 
ij
int  and ij

mean  are corresponding invariants of stress tensor ij


 . 

When using the explicit scheme of integration of motion equations the value of time step t 

is limited above by a quantity associated with the time of propagation of the sound through 

the volume of element. Normally time step is a quarter of this limit or less. In such a situation 

conventional model of breakage of bond in pair during one time step t is an idealized 

condition because virtually suggests that the spatial separation of atomic layers occurs 

uniformly over the whole surface of interaction of elements. The following approach to a 

more accurate description of the dynamics of crack growth is suggested. In this approach, it is 

assumed that breaking of the bond (linkedunlinked transition of the state of the pair) is a 

time-space distributed process. This process is technically expressed through change of the 

dimensionless coefficient ij
linkk  ( 10 

ij
linkk ). This coefficient has the meaning of the portion of 

linked part of the contact area Sij. In this case the square of linked part of the contact area in 
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the pair i-j is ij
linkij

ij
link

kSS  , while  ij
linkij

ij
unlink

kSS  1  is the square of unlinked part of this area. 

Thus, in this approach, the dynamics of bond breaking in a pair of elements is expressed by 

the dependence  tk
ij
link , where ij

linkk  decreases from initial value 1 (totally linked pair) to final 

value 0 (totally unlinked pair). Depending on the size of the discrete elements and features of 

the internal structure of fragment of the material, which is simulated by the discrete element 

(in particular, the presence of pores, damages, block structure) the stable or unstable crack 

growing model can be applied to describe the breakage of bond in the pair. These models are 

described in [6]. 

5 CONCLUSIONS 

- An approach which makes possible fundamental extension of the application field of 

DE-based methods to elastic-plastic (as well as to visco-elastic-plastic) solids is 

proposed in the paper. This approach is based on the idea about building associations 

between the components of local stress/strain tensor and the inter-element 

forces/displacements. The proposed associating allows one to rewrite relations of the 

applied model of elasticity and plasticity (which are conventionally written in terms 

of stress/strain tensor components) in terms of forces and displacements or their 

increments. 

- Another important advantage of the developed formalism of discrete element 

interaction is a possibility to directly apply complex multiparametric fracture criteria 

(Drucker-Prager, Mohr-Coulomb, etc) as criteria of interelement bond breakage. The 

use of these criteria is very important for correct modeling of fracture of complex 

heterogeneous materials of various nature. The method of calculation of these criteria 

for the pair of interacting elements is proposed in the paper. 

- For correct modeling the processes of inelastic deformation and fracture of geological 

materials and media at “high” structural scales (relative to the scale of grains) the 

well-known Nikolaevsky’s model of plasticity of rocks is implemented within the 

framework of mathematical formalism of discrete element method. The important 

features of this model are taking into account effect of pressure on the condition of 

reaching the yield state (beginning of inelastic deformation) and linear dependence of 

dilatation on plastic shear strain. Note that at present time this model as well as other 

analogous miltiparametric dilatational models of plasticity are widely used within the 

formalism of conventional numerical methods of continuum mechanics (FEM, FDM 

and so on) to study mechanical processes in geomedium. Implementation of plasticity 

model of such kind within the framework of DEM is carried out for the first time. 

- Developed mathematical formalism of DEM can be considered as the basis for 

building multiscale models of heterogeneous materials (including rocks) with 

hierarchically organized multiscale internal structure. Currently there are several 

approaches to the construction of such multiscale models. One of the approaches is 

developed by the authors of this paper and is called "integral" approach [10]. Under 

this approach, the parameters of applied rheological model of the material are 

considered as functions of the current values of local strains and strain rates (typically 

invariants of these tensors are used as arguments of functions). Main 

structural/spatial scales of lower ranks in relation to the considered one are defined. 
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For each distinct structural level, starting with the lowest, the so-called representative 

volume is determined. According to the results of theoretical study (analytical 

description or numerical DEM-based modeling) of the response of a representative 

volume the form of integral rheological dependence and the values of its parameters 

(including strength) are derived [2,10]. Thus constructed rheological models are then 

used as input data for the components of structure (regions with different structural 

phase composition) at a higher-level scale. The consistent implementation of this 

procedure, starting from the lowest selected scale up to macroscopic one, provides a 

macroscopic rheological model of brittle material. Being applied to non-associated 

plastic flow model of Nikolaevsky, the procedure of construction of multiscale model 

of rock (or geological medium) comes to determining the form and parameters of 

dependencies  msmsY  , ,  msms  ,  and  msms  , . 
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