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Abstract. Modelling of railway ballast response using Discrete Element Method with
polyhedral shape of grains is presented. The convex polyhedrons are generated pseudo-
randomly via Voronoi tessellation. Inter-particle contact is based on calculation of in-
tersecting (polyhedral) volume. Large oedometric test is simulated using this model and
results are compared to an experimental data from literature.

1 INTRODUCTION

Discrete Element Method (DEM) has been successfully applied to many engineering
problems. In most cases, the simplest spherical elemental shapes are used. However, it
has been reported that the particle shape has a strong influence on resulting behavior
of the particle assembly. Therefore, more realistic shapes are being considered. This is
often achieved by clumping spheres into some more complex aggregations [5]. Such a
method has an advantage in simplicity and computational speed. Another approach lies
in direct implementation of some non-spherical elements. A contact detection algorithm
and an algorithm for determination of contact forces between the non-spherical particles
must be developed. Examples can be found in Bathurst and Rothenburg [1] for elliptical
shapes, Song et al. [20] for tablet shapes or in Nezami et al. [18] for polyhedral shapes.

One can find also papers comparing these two methods of representation of realistic
shapes. In Szarf et al. [21], response of polygonal particles is compared to response of
spherical clumps. The same in 3D is shown in Höhner et al. [8] for polyhedrons and
spherical clumps.

In case of convex polyhedrons, a technique developed by Cundall [4, 7] called common
plane method is often used. It replaces contact between two polyhedrons by two plane-
polyhedron contacts. This method was further improved by fast determination of the
common plane [16, 17]. Somehow different approach was developed in Boon et al. [2].
Instead of the common plane method, their contact forces are derived via inner ”potential
particles”.
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There have been several attempts to simulate railway ballast using DEM. The reported
results seems to be promising. The ballast particles are represented either by spherical
clumps [13], polygons [19] or polyhedrons [9]. An important part of the ballast behavior
is its crushing. The crushing might be modeled as splitting of clumps [13] or by replacing
the damaged particle by two or more smaller particles [14].

In this contribution, we present another possible way how to estimate contact forces
between two polyhedrons. The repulsive force linearly increases with a volume of a poly-
hedrons intersection. The contact normal direction (in which the repulsive force acts) is
estimated by the least square fitting of a polyhedron surfaces intersection by a tangent
plane. The contact shear force is evaluated by the standard incremental algorithm with
Coulomb friction.

The polyhedral contact model is developed to be used for railway ballast simulations.
Crushing is not presented in the contribution, but it can (and it will) be simply introduced
by cutting the polyhedrons into smaller ones. The shape of polyhedral ballast particles is
generated by Voronoi tessellation on randomly placed points. It is therefore random, but
its overall size as well as its aspect ratio can be controlled.

The model is applied to simulation of a large oedometric test and results are compared
to an experimental data taken from literature.

Algorithms presented in the contribution were implemented into the open source DEM
software YADE [23, 11]. Manipulation with polyhedrons as well as computation of convex
hulls and least square fitting by plane is done via open source software CGAL [10, 3].

2 RANDOMLY GENERATED POLYHEDRAL SHAPES

The polyhedrons are generated by Voronoi tessellation on pseudo-randomly placed
nuclei. Initially, some volume (in our case of size 5 × 5 × 5 units) is filled by nuclei
with minimal mutual distance dmin. Starting with nucleus C0 = (0, 0, 0) in the center
of the volume, other nuclei with random coordinates are accepted if their distance to
all previously placed nuclei exceeds lmin. This is repeated until no nucleus is accepted
for 500 subsequent trials. Restricting distance lmin is set to 0.75 units, because then the
average distance between points is close to 1 unit. Voronoi tessellation is performed and
the Voronoi cell associated with the central nucleus C0 is extracted and used as a basic
polyhedral shape.

This Voronoi cell is further rescaled in all three directions by factor s = (sx, sy, sz).
Every vertex x̄ of the basic polyhedron is therefore transformed by the scaling vector:
x = (x̄sx, ȳsy, z̄sz). The final grain shape is then given by vertices x. Because the
scaling procedure scales along axes x, y and z, the final polyhedron is also randomly
rotated to prevent directional bias.

Volume, centroid and inertia of the polyhedral particle is calculated through dividing its
volume into tetrahedrons. Contributions of tetrahedrons to each of the wanted quantity
are found using analytical formulas from Tonon [22]. Figure 1 shows some resulting
random polyhedrons. Three scaling aspect ratios are considered in the figure.
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Figure 1: Randomly shaped grains generated via Voronoi tessellation. Three variants differs by pre-
scribing different scaling factors along x, y and z axes. Each polyhedral grain is showed in front (A), side
(B) and bottom (C) view.

3 CONTACT BETWEEN TWO POLYHEDRONS

In every step, there is a loop detecting all possible contacts between polyhedral ele-
ments. This is simply done through creation of bounding boxes around every polyhedron
and detection of overlapping between the bounding boxes. Box overlapping exists if and
only if bounding boxes overlap along all three axis. The problem is therefore reduced into
triple overlap detection of segments in 1D.

3.1 Contact detection

If box overlapping is detected, one must check overlapping between polyhedrons A
and B. The polyhedrons are represented through set of oriented planes Ai that creates
polyhedron facets

Ai(x, y, z) = nxx+ nyy + nzz + a = 0 (1)

where n = (nx, ny, nz) is the normal vector pointing outwards from the polyhedron and
a is a constant determining position of the plane.

Overlapping is assumed until some separation plane is found. One should search for
separation plane in a set that contains (i) facet planes Ai of the polyhedron A; (ii)
facet planes Bi of the polyhedron B; and (iii) planes determined by one edge from A
and another edge from B. A loop over all these plane candidates is browsed. Every
time, a trial separation plane that constitutes two halfspaces is constructed. All vertices
from the first polyhedron A must lay at one halfspace whereas all vertices from second
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polyhedron B must lay in the other halfspace. Whenever such condition is fulfilled, the
separation plane is found and polyhedrons do not overlap. If the loop is finished without
any separation plane found, there is a contact between polyhedrons.

To save computational time, one can store entities that defined the separation plane
and in the next time step start with the trial separation plane using these entities with
updated positions. Time savings can be gained also for polyhedrons previously in contact.
One can simply check if the centroid of the intersection polyhedron cI from the previous
time step still lies in both polyhedrons with updated position and orientation. This is
performed by a loop running through all the facet planes of both polyhedrons and checking
that the centroid cI is on the negative side of all those planes.

The procedure operates with a verification on which side of the plane some point x is.
This can be determined by inserting the point x into the plane equation 1 and signum of
the resulting value tells us in which halfspace the point lies.

3.2 Repulsive force

It is assumed, that the normal force acts at the centroid cI of the intersection I.
Magnitude of the repulsive normal force |F n| is determined from intersection volume VI

|F n| = VIkn (2)

where kn [N/m3] is a material parameter called volumetric stiffness. A complication of
such definition is evaluation of the intersection volume. This operation is computationally
demanding. Here, we use the dual approach to find it [15, 6].

• Both of the intersecting polyhedrons are dualized. Facet planes (Eq. 1) from both

polyhedrons are transformed into dual points Âi and B̂i.

Âi = (nx/a, ny/a, nz/a) (3)

• The convex hull of these dual points is found. Such convex hull is again a convex
polyhedron determined by its oriented facet planes.

• The polyhedron in the dual space found in the previous step is dualized again using
Eq. 3. These dual points are actually real points as we project them from the dual
space into the real one.

• Finally, convex hull of points from the previous step gives us the intersecting convex
polyhedral object I.

Volume VI and centroid cI of the intersection is then easily found by dividing I into
tetrahedrons as is done for the whole polyhedral particles.

The dualization algorithm requires that the origin must be inside the resulting intersec-
tion volume. One therefore needs to find some point inside both polyhedrons and translate
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Figure 2: Two polyhedral particles in contact, intersecting polyhedron I, centroid and normal direction.

the problem into a new coordinate system with origin at the common point before the
dualization is started. For existing intersection, we use the intersection centroid cI from
the last time step (but only if it remains in both polyhedrons with updated positions).
For new interactions, such point is found by searching for any facet-edge intersection.

Figure 2 shows two particles in contact and its polyhedral intersection.

3.3 Normal direction

Furthermore, we need to determine direction of the normal force F n. Motivated by 2D
sketches, we decided to fit the polyhedra surfaces intersection by a plane f and set the
normal direction to be perpendicular to that plane.

After finding the intersecting polyhedron, its facets are divided to those belonging
originally to A polyhedron and to B polyhedron, respectively. Edges on the boundary
between these two groups are then interpolated by a plane f with normal vector n using
the least square fitting. The force F n is then given by

F n = n|F n|/|n| (4)

The boundary edges fitted by the normal plane f are showed in Fig. 2 in red color.

3.4 Shear force

Shear force F s is calculated by standard incremental algorithm [23]. Shear force from
the last time step is corrected for changes in the normal direction and for the rigid-body
motion. Then, an additional shear displacement increment caused by mutual movements
and rotations of polyhedrons ∆us is calculated and the shear force is adjusted by incre-
ment

∆F s = ∆usks (5)
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where ks [N/m] stands for shear stiffness of the material.
Standard Coulomb friction is applied. Therefore, whenever the shear force violates

following condition
|Fs| ≤ ϕ|F n| (6)

it is reduced to fulfill equality in Eq. 6. Coefficient ϕ is called friction angle.

4 OEDOMETER TEST SIMULATION

4.1 Description of the experiment

We validated the proposed model by simulating a large oedometric test on railway
ballast performed and published by Lim [12]. They tested several different ballasts, from
which we chose variant A with ballast particle size in interval 37.5-50 mm. A steel
cylinder of diameter 300 mm and depth 150 mm was filled by the ballast and vibrated on
a vibration table with surcharge force 250 N. Then, it was loaded in compression up to
force -1.5 MN (mean stress 21.2 MPa). Total duration of the experiment was about 40
minutes.

The same experiment was previously simulated in Lim and McDowell [13] using crush-
able sphere clumps. The loading time was shortened to approx. 0.4 s. The published
results agrees with the experimental data except the initial part, because the vibration
was not simulated.

4.2 DEM simulation

Initially, randomly shaped polyhedrons were generated at random positions in a cylin-
der of magnified depth 1 meter with no overlapping. This was done by sequential placing
of trial polyhedrons that were rejected each time when any conflict with previously placed
particles appeared. The polyhedrons then fall freely under 5 times magnified gravitational
acceleration and reduced friction angle 0.1 radians. Both gravity and friction changes were
done to increase compaction of the assembly. After reaching low unbalanced forces, all

Table 1: Material properties used in simulations.

ballast

normal volumetric stiffness kbn N/m3 1.5× 1011 – 1.5× 1013

shear stiffness kbs N/m kbn/105

friction angle ϕb rad 0.6
density ρb kg/m3 2600

steel

normal volumetric stiffness ksn N/m3 10× kbn
shear stiffness kss N/m ksn/105

friction angle ϕs rad 0.4
density ρs kg/m3 7800
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Figure 3: Snapshots of ballast particles during simulation: a) at the beginning of loading; b) at the
maximum load; c) after releasing all the load.

polyhedrons exceeding limit 0.18 m were removed, a steel loading plate was placed at
the top of the granular assembly with surcharge force 250 N, the gravity and the friction
angle were set to their normal values. Then, the simulation continued until low value of
unbalanced forces was reached again. At that point, loading by sinusoidal wave started.
Similarly to Lim and McDowell [13], the time of loading was shortened to 0.5 s.

Polyhedrons used in the simulation were generated by Voronoi tessellation. About
400 of them were successfully placed. The scaling factors sx, sy and sz were chosen
randomly with the uniform distribution between 30 and 45 mm and independently in
all three directions. Material properties of the ballast and steel are specified in Tab. 1.
Three variants differing by the normal volumetric stiffness of the ballast were considered:
kbn = 1.5× 1011 N/m3, 1.5× 1012 N/m3 and 1.5× 1013 N/m3. Time step was 4.3× 10−6,
1.36× 10−6 and 4.3× 10−7 s depending on the ballast stiffness. Damping coefficient was
set to 0.3.

Views of the ballast assembly at the beginning of loading, at the maximum load and
after the load was released is showed in Figure 3. Since no crushing was considered at
this point, the polyhedral shapes do not change. Displacement u of the steel loading plate
was measured and it is plotted against the loading force in Fig. 4. Three variants of the
stiffness are showed in different colors. From 2 to 4 simulations with different random
seeds were calculated for each stiffness variant. The experimental measurement [13] is
the bold red line. The same simulations and experiment are showed also in Fig. 5, where
mean compressive stress σ = −F/π0.152 in logarithmic scale is plotted against a relative
volume change V/V0 = (0.15 + u)/0.15.

Though the experimental and simulation responses are different, there is a correspon-
dence in the unloading stiffness. For the most stiff variant with kbn = 1.5 × 1013, the
slopes of unloading curves are comparable. Loading branch cannot be correct without
implementation of the crushing. Even after crushing is introduced, the achieved level of
compaction in the experiment will be far from the low compaction level in the model.
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Figure 4: Load-displacement response of the large oedometric test and its simulations.
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Figure 5: Mean compressive stress versus relative change in volume measured during the large oedometric
test and its simulations.

The whole simulation including the free fall and two equilibrations took about 1.5, 3
or 6 days depending on the gravel stiffness. One Intel Xeon core with frequency 2.53 GHz
was used.

5 CONCLUSIONS

The paper presents DEM simulation of railway ballast. Particularly, three outcomes
were showed:

• A method to generate random polyhedral shapes of ballast particles using Voronoi
tessellation on randomly placed nuclei. One can specify particle size and aspect
ratio.

• An algorithm to estimate the repulsive force and the normal direction between two
overlapping polyhedrons was developed. It is based on calculation of volumetric and
surface intersections. Comparison to the standard common plane method has not
been performed yet.
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• The model was validated by simulation of a large oedometric test using the proposed
random polyhedral shape of elements and volumetric-based contact response. No
crushing was considered.
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