
II International Conference on Particle-based Methods - Fundamentals and Applications
PARTICLES 2011
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Abstract. This work reports the numerical performance of the Normalized Quadrature
Method of Moments (NQMOM) involving more than one quadrature node (secondary
particle) for dispersed phase flows coupled with the Finite Pointset Method (FPM). At
first, the model used for the dispersed phase acting in a continuous environment is dis-
cussed briefly, followed by a theoretical discussion of NQMOM and FPM. Further sections
report the numerical performance for test problems with increasing difficulty.

1 INTRODUCTION

In many situations physical systems are governed by processes in which particles come
into existence and die during time. A Population Balance Equation (PBE) is an appropri-
ate mathematical way to formulate the behavior of these particulate processes.The PBE
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describes the evolution of the distribution function over one or more extensive physical
variables in space and time. In many branches of engineering such modeling approaches
led to a deeper understanding of the corresponding processes such as aerosol dynamics
and others cf. [6], [7],[5]. Mathematically one usually faces an Integro-PDE or ODE
where only in few cases analytical solutions have been found, cf.[4], and hence numerical
methods have to be used. Among other schemes the concept of primary and secondary
particles has proven to be very promising since many schemes are discovered to be special
cases of this method. This concept uses low order moments of the distribution function
for reconstruction, cf. [1]. In practice, many implementations suffer from a low overall
number of particles. This work reports the numerical performance of a modified ver-
sion of the concept of primary and secondary particles. Its name is the ”Normalized
Quadrature Method of Moments” (NQMOM), which has been introduced by [2] and is
now extended to two secondary particles and one primary particle while coupled with the
Finite Pointset Method (FPM) software package from the Fraunhofer Institute for In-
dustrial Mathematics (ITWM). In the case presented here, the equation models droplets
merging and breaking in a continuous fluid. One faces such multiphase flow situations for
instance in liquid-liquid-contactors cf. [3].

2 THE MODEL FOR THE DISPERSED PHASE

At first, we will present the model used for the droplets and will give a look on the
coupling with the solver for the continuous phase. In the following, we will call the phase
consisting of the droplets the dispersed phase. As mentioned before the physical behavior
of the dispersed phase, i.e. the change of the physical variables being involved can be
described by the PBE. Such physical variables may be the volume of the droplets, their
diameter or some solute concentration of the droplets. Here, we involve one physical
variable, the volume v. Then, the distribution function f = f(t, x, v) carries the physical
information of the droplets in a way such that f(t, x, v)dv is the number of all droplets
at position x having the volume v at time t. f satisfies the following transport equation,
called Population Balance Equation

∂tf +∇x · (vdf) = + 1/2 ·
∫ vmax

0

ω(v − v′, v′)f(t, x, v − v′)f(t, x, v′)dv′

− f(t, x, v)

∫ vmax

v

ω(v, v′)f(t, x, v′)dv′

− Γ(v) · f(t, x, v)

+

∫ vmax

v

Γ(v′) · β(v|v′)f(t, x, v′)dv′.

(1)

vd denotes the velocity field of the droplets, and Γ, β as well as ω model the breakage
and merging behavior of the droplets.

The functions Γ and β in eq. (1) are called breakage functions since they govern the
breakage behavior of the droplets. β(v|v′) is the daughter droplet distribution function.
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Timo F. Wächtler, Axel Klar, Sudarshan Tiwari, Jörg Kuhnert, Menwer Attarakih and Hans-Jörg Bart

That means β(v|v′)dvdv′ represents the number of droplets of volume v formed by a
droplet of volumev′ at a breakage event. There are several models for β in literature, but
all of them have in common that β(v|v′) = 0 ∀ v′ < v since a droplet with volume v′

cannot produce a droplet of volume v satisfying v′ < v at breakage. β(v|v′) is a product
of ψ(v|v′) and φ(v′). ψ(v|v′) represents the density of the probability that a mother
droplet of volume v′ actually produces a daughter droplet of size v at breakage. On the
other hand φ(v′) is the average number of daughter droplets which are being born when
a mother droplet of size v′ is splitting up. Γ is said to be the breakage frequency standing
for the number of breakage events per unit time. ω(v, v′) is the aggregation frequency
representing the number of aggregation events of a pair of droplets of size v and v′ per
unit time.
As for the breakage functions Γ and β, there exist several formulas for the aggregation
frequency. All of these formulas have to be symmetric with respect to v and v′ in order
to be capture the aggregation invariance of a pair of droplets having the sizes (v, v′) and
(v′, v). For both types of droplet events, breakage and aggregation, the ±-terms represent
the gain and loss numbers of droplets.

The motion of the droplets within the fluid is governed by the balance of the momentum
d

dt
vd = −∇p

ρd
+ g − 1

ρdαd
Fdrag (2)

where p denotes the pressure of the continuous liquid and d
dt

is meant to be the substantial
derivative, i.e. d

dt
:= ∂t + vd∂x. αd is the volumetric fraction and follows the conservation

law d
dt
αd = −αd∇·vd. In contrast, ρd is the density of the dispersed phase. The model for

the velocity of the dispersed phase respects the buoyancy force, influence of gravity and
the drag force acting on the surface of the droplets according to a non-vanishing relative
velocity vd − vl, vl being the velocity of the continuous liquid. For the drag force, the
well-known model from Schiller & Naumann [8]

Fdrag =
3

4
αdρl

CD
d30
|vd − vl|(vd − vl)

has been taken. Here ρl is the density for the continuous fluid, in analogy to ρd, and CD
is given by

CD =

{
24

Re(1 + 0.15 Re0.687) if Re ≤ 1000

0.44, otherwise

Re is supposed to be the relative Reynolds number Re =
ρl|vd − vl|d30

µl
, where µl is the

dynamic viskosity of the continuous fluid. Note, that the intermediate diameter of the
droplets, d30, can be expressed with the help of f . This is the major reason for the
introduction of (1). This issue will be revisited later, cf. (16) .

The equation for vd is also the point of intersection for the model of the continuous
phase since Fdrag involves quantities from the liquid phase and the pressure gradient ∇p
itself comes from the continuous phase. Details follow in section 7.
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3 THE DISCRETIZATION OF THE PHYSICAL VARIABLE

In this section we discuss the discretization of (1) with respect to v. In the following,
the right-hand-side of (1) will be abbriviated by s(t, x, v).
We perform the approach

f(t, x, v) =

Npp∑
i=1

Ni(t, x)δ(v − vi(t, x)) (3)

where δ denotes the dirac delta distribution. The tupels (N i, vi) are called primary
particles with weight N i and volume vi and have to be computed. This is done in the
following way: The range of v is divided into Npp intervals Ii = [vi−1/2, vi+1/2], each of
them associated with one primary particle. So, Npp is the number of primary particles.
On this interval, we place Nsp secondary particles (N i

j , v
i
j) that means we do the ansatz

f |Ii =

Nsp∑
j=1

N i
j(t, x)δ(v − vij(t, x)). (4)

Now the average weights and volumes of the secondary particles is the primary particle,
i.e.

Ni =

∑Nsp

j=1N
i
j

(vi+1/2 − vi−1/2)
, vi =

∑Nsp

j=1N
i
jv
i
j∑Nsp

j=1N
i
j

and the secondary particles remain to be computed.
In order to compute the secondary particles we need 2Nsp equations for each primary
particle to obtain a solution for the 2Nsp unknowns (vij, N

i
j), j = 1, · · · , Nsp.

Therefore we plug in the ansatz for f |Ii in (1), multiply by vr, r = 0, · · · , 2Nsp − 1 and
integrate with respect to v.
In this way, we obtain a set of 2Nsp equations of moments

∂tη
r
i +∇x · (vdηri ) = Sri , r = 0, · · · , 2Nsp − 1 (5)

using the definitions ηri :=

∫ vi+1/2

vi−1/2

vrfdv, Sri :=

∫ vi+1/2

vi−1/2

vrs(t, x, v)dv.

These equations have to be evaluated in space and time and after each time step the
secondary particles are to be reconstructed.

For the reconstruction of the secondary particles, we use (4) and obtain the identities

ηri =

Nsp∑
j=1

vi
r

j N
i
j , r = 0, · · · , Nsp. (6)

The left hand side results from the numerical solution of (5) which puts us in the need to
solve (6) in each time step.
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4 THE DISCRETIZATION OF SPACE

The set of equations (5) resulting from the concept of primary and secondary particles
are standard advection-reaction-equations and several schemes for hyperbolic equations
can be used to resolve these equations.
Here, we use the Finite Pointset Method (FPM) to discretize the problem with respect
to x, as it is implemented in the homonymous software package of the ITWM.

The key idea of FPM is to approximate differential operators like ∆, ∇·, or ∂x on a
set of finitely many points without grid structure.
Let

Ωp := {xi : i = 1, · · · , N} (7)

be the cloud of points where the computations are intended to be transacted.
Furthermore, let

Ωp ⊃ Ωp
ξ := {x ∈ Ωp : r(ξ, x) < 1} = {xl ∈ Ωp, l = 1, · · · ,m < N} (8)

be the set of neighbor particles of ξ ∈ Ωp where r(x, y) is a general distance function for
two points x and y.
In FPM a function u(t, x) is assumed to live on Ωp which means it uses the ansatz

u(t, x) = (u1 · · ·uN) , ui = u(t, xi), xi ∈ Ωp. (9)

Using the following notation for a differential operator T on Ωp

T [u](t, ξ) :=< cξ, u(t, x) >=
m∑
l=1

cξl u(t, xl)

the two major criterions for the stencils cξ read

least squares criterion: min
1

2
‖W−1

ξ · cξ‖
2

consistency criterion: KT
ξ · cξ = b

where

Rm×m 3 Wξ = diag
(
w1
ξ , · · · , wmξ

)
, wlξ = w(r(ξ, xl))

Rm×S 3 Kξ =
(
k0ξ |, · · · , |kSξ

)
.

kjξ , j = 0, · · · , S are polynomial test functions on Ωp
ξ . They read kjξ = ((x1 − ξ)j, · · · , (xm − ξ)j)

and w(r) is a weight function for the distance r.
The vector b in the consistency criterion controls, which operator is approximated by

T and is obtained from a taylor expansion.
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The FPM implementation from ITWM is designed as a Lagrangean method which
tracks the solution of (5) along curves x(t) ∈ R3 with ẋ = vd (streamlines). Using simple
computational steps (5) can be brought in a form, which is much more appropriate for
Lagrangean methods since there are no more spatial differential operators to discretize:

Let η̂ri :=
ηri
η0i

and Ŝri :=
Sri
η0i

. Then, (5) comes into

d

dt
η̂ri + Ŝ0

i η̂
r
i = Ŝri , r = 0, · · · , 2Nsp − 1 (10)

which are the equations we actually solve for η̂ri . η̂
r
i are called normalized moments and

these are the objects NQMOM is named after.

5 ONE PRIMARY PARTICLE AND TWO SECONDARY PARTICLEMETHOD

If we run the above described method with only one primary particle, and two secondary
particles we end up with the following system of equations for the dispersed phase.

d

dt
vd = −∇p

ρd
+ g − 1

ρdαd
Fdrag (11)

d

dt
αd = −αd∇ · vd (12)

d

dt
η̂1 + Ŝ0 · η̂1 = Ŝ1 (13)

d

dt
η̂2 + Ŝ0 · η̂2 = Ŝ2 (14)

d

dt
η0 + η0∇ · vd = S0 (15)

d30 =
3

√
6

π
η̂1. (16)

Equation (16) is the average diameter of the droplets and is needed to evaluate the drag
force in the source term for (11).

In general, equations (11)-(16) have to be solved for more than one primary particle,
in order to reconstruct f . If the method uses only one primary particle, it is impossi-
ble to reconstruct f , but it provides solutions for the moments. However, the physical
information is stored in the moments of f and therefore the One-Primary-Two-Secondary-
Particle-Method (OP2SP) is described .

Note that the system of equations (13)-(16) is free of a division by η0 up to the eval-
uation of the Ŝr’s. However, the auxiliary assumption N1 = N2 := N that the weights
of the two secondary particles (N1, v1), (N2, v2) are equal changes this into a completely
division-free method. This means that the method is stable even for very small numbers
of droplets η0.

The number of normalised moments η̂r and η0 is exactly the number of unknowns
N, v1, v2.
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Timo F. Wächtler, Axel Klar, Sudarshan Tiwari, Jörg Kuhnert, Menwer Attarakih and Hans-Jörg Bart

6 NUMERICAL RESULTS FOR THE HOMOGENEUOUS PROBLEM

Now, we report the numerical results for cases where analytical solutions have been
found. These problems are homogeneuous in space and breakage events are neglected.

∂tf(t, v) = + 1/2 ·
∫ vmax

0

ω(v − v′, v′)f(t, v − v′)f(t, x, v′)dv′

− f(t, v)

∫ vmax

v

ω(v, v′)f(t, v′)dv′.

(17)

For the case of a constant aggregation frequency ω ≡ const and the sum aggregation
kernel ω(v, v′) = v + v′ solutions are known, cf. figure 1, figure 2. Here, we compare η0
and η1 reconstructed from η̂1 and η0.

The major difficulty of solving this problem lies in the evaluation of the source term.
However, approach (3), (4) respectively, yields

Ŝr =
η0

2N2
sp

Nsp∑
i,j=1

[
(vi + vj)

r − vri − vrj
]
ω (vi, vj) , r = 0, 1, 2 (18)

Then, the following schemes can be formulated

ηn+1
0 = ηn0

(
1 + ∆tŜn0

)
(19)

η̂n+1
r =

η̂nr + ∆tŜnr

1 + ∆tŜn0
. (20)

Figure 1: Comparison: Numerical & analytical solutions of η0, η1 with ω = 1 no breakage

In both cases η1 has to be a constant because of conservation of mass whereas η0 has
to be monotonically decreasing since the droplets are only allowed to merge and not to
break.
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Figure 2: Comparison: Numerical & and analytical solutions of η0, η1 with ω(v, v′) = v+v′, no breakage

7 NUMERICAL RESULTS WITH SPATIAL DEPENDENCE

Next, we encounter a 2D inflow problem with constant aggregation kernel, where the
full system (11)-(16) is being solved. In parallel to that, we solve equations for the
continuous phase in order to gain the quantities to evaluate the right hand side. For this
phase, we consider the following momentum balance

d

dt
vl =

1

ρl
(∇ · S)− 1

ρ
∇p+ g + F l

drag (21)

vl being the velocity, p the pressure, g the constant of gravity and S the stress tensor
which reads

µl
1

2

[
∇vl + (∇vl)T −

1

3
(∇ · vl) Id

]
(22)

Supposed vl to be known one can establish equations for the pressure p = phyd + pdyn

∇ ·
(

1

ρl
∇phyd

)
= ∇ ·

(
g + F l

drag

)
∇ ·
(

1

ρl
∇pdyn

)
= − d

dt
(∇ · v)− h(v) +∇ ·

(
1

ρl
∇ · S

)
where h(v) = ∇·

(
d
dt
vl
)
− d
dt
∇·vl. These equations are used to provide the information which

are needed to evaluate the dispersed phase equations. Solving equation for pdyn is not
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straight forward since for the time step n+ 1 we would need vn+1
l . This problem is solved

by a correction technique, where we rework the pressure approximation p̂ = pn+1
hyd + pndyn.

F l
drag reads

F l
drag = CD

3

4
|vd − vl| (vd − vl)

αd
d30

(23)

which comes from the overall drag force acting between the continuous and the dispersed
phase at position x at time t. In contrast, Fdrag in (2) is the drag force of a single droplet.

Solving the two phase flow problem now is done in the following way: First, we establish
two separated clouds of spatial points. Each of these clouds are associated to one flow
phase and moved by the evaluated corresponding velocity field.

Figure 3: two separated clouds of spatial points (red:dispersed, blue: continuous phase)

These two clouds of points exchange information by interpolating the quantities from
one cloud on the other cloud. In this way, we are capable to gather the quantities which
are necessary to evaluate the the right hand side of (11).

The additional terms in (15) resulting from a present velocity field are resolved by
traditional methods for hyperbolic equations adapted to the meshfree framework (artificial
viscosity). The iteration for (11) uses an exponential approach. We rearrange (11) into
the general form

d

dt
vd + Avd = B (24)

and assume A, B to be constant in one time step. Then, we use the analytic solution of
(24) to perform a time step dt.

vn+1
d =

B

A
+ (vnd −

B

A
) exp (−A dt) (25)
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Figure 4: d30 inlet: t=0.99 ω ≡ 10−8, no breakage, gravity acts in direction ←

Figure 5: d30 inlet: t=1.50 ω ≡ 10−8, no breakage,gravity acts in direction ←
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Figure 6: velocity: magnitude and direction, t=0.99 ω ≡ 10−8, no breakage,gravity acts in direction ←

Figure 7: velocity: magnitude and direction, t=1.50 ω ≡ 10−8, no breakage,gravity acts in direction ←
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Table 1: Parameters for the numerical results

ρc 1000 kg
m3

ρl 800 kg
m3

µl 10−3Ns
m2

The numeric results for d30 indicate a qualitative correct behavior. As time proceeds
the values are getting transported due to dt = ∂t+vd∇x and increase slightly. This increase
happens by virtue of the neglect of breakage events, which means that the droplets are
only allowed to merge and not to split up. This implies that the average diameter has to
increase.
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