Numerical Analysis on the Lighthill Sound Sources of Oscillating Jet

Sho Iwagami*, Genki Tsutsumi*, Kenichiro Nakano*,
Taizo Kobayashi†, Toshiya Takami††, and Kin’ya Takahashi*,

* Mechanical Information Science and Technology, Kyushu Institute of Technology
680-4 Kawadu, Iizuka City, Fukuoka 820-8502, Japan
iwagami@chaos.mse.kyutech.ac.jp

† Faculty of Fukuoka Medical Technology, Teikyo University
6-22 Misaki-cho, Omuta City, Fukuoka 836-8505, Japan

†† Research Institute for Information Technology, Kyushu University
6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

ABSTRACT

We numerically have been studying the generation of sound pressure and pseudo-sound pressure from the oscillating jet based on the Lighthill acoustic analogy[1]. In recent works, it has been found using Howe’s energy corollary that jet oscillations make some amount of acoustic energy, which becomes the sound sources of edge tone and flue instruments[2-5]. However, Howe’s energy corollary is the indirect way for the estimation of aerodynamic sound energy[2].

In order to estimate directly the aerodynamic sound generation, we investigate the role of the Lighthill sound sources of edge tone. The Lighthill sources generate not only acoustic oscillations propagating to a far field but also pseudo-sound pressure (or fluid pressure) in a near field[6]. Thus, we will discuss with numerical simulations how many parts of the energy made by the Lighthill sources are transferred to that of the pseudo-sound pressure and how the small remainder contributes to the generation of the true acoustic oscillations.

REFERENCES


