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ABSTRACT 

A discrete velocity method (DVM) for solving the Boltzmann equation developed at The University of 
Texas at Austin [1,2,3] has been extended to account for polyatomic molecules with excited internal energy 
states. A decoupled, quantum description is used for rotational and vibrational energy modes where 
vibration is described with an anharmonic oscillator and rotation is described with a non-rigid rotor. 
Removing rotation-vibration coupling terms gives rise to errors, but the difference between the coupled and 
decoupled models are shown to be within acceptable limits: 1% difference in the partition functions at 
3,000 K to 6% difference in the partition functions at 20,000 K for a typical diatomic molecule. Vibrational 
and rotational distribution functions are stored at every velocity location as independent arrays. The sum 
over all vibrational levels and the sum over all rotational levels both equal the number density at the 
velocity location. The initial method models every energy level up to some maximum level number based 
on the expected maximum temperature. However, such a detailed description has large memory and 
computational requirements because the total number of values stored at each spatial location is the number 
of velocity points multiplied by the total number of points used to describe the vibrational and rotational 
distributions. If each allowed quantum number is used then the total number of points is, Nvel(Nvib + Nrot). 
Because of the computational requirements the full description is limited to simulation of homogeneous 
relaxation for the purpose of testing and validation of the inelastic collision dynamics. A reduced level 
number model is developed that decreases the number of simulated levels to be used for flowfield 
simulations. Quantum states are grouped into a select number of representative levels based on the range of 
temperatures expected during a simulation, and the entire density grouped at each representative level takes 
on the energy value corresponding to the level location. Inelastic relaxation rates (Zv and Zr), which are 
measures of the number of elastic collisions compared to the number of inelastic collisions, are accounted 
for through splitting each depletion into three parts: (1) inelastic collisions with exchanges between 
vibrational and translational energy for each collision partner and depletion density scaled by 1/Zv, (2) 
inelastic collisions between rotational and translational energy for each collision partner and depletion 
density scaled by 1/Zr, and (3) an elastic collision with depletion density equal to the remaining density 
after the inelastic parts have been removed. Using the depletion splitting method allows for smoother 
solutions of internal energy without excessive increases in the number of simulated collisions. Exchange 
probabilities for the reduced level number model are pre-calculated from a Larsen-Borgnakke model or 
some other model such as a state-to-state model and read from a data file during the initialization phase of 
the code. Results will be shown for simulations of diatomic gases. Comparisons will be made to Direct 
Simulation Monte Carlo and experimental results. 
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