A NEW NUMERICAL METHOD TO SOLVE THE BIDIMENSIONAL FLOODING CONTROL PROBLEM USING SHALLOW WATER EQUATIONS

Ariel Fraidenraich1, Esteban Mocskos2 and Fernando Roberto de Andrade Lima3

1Departamento de Ingeniería Ambiental, Universidad Nacional de Tres de Febrero
Valentin Gómez 4752- Caseros. Buenos Aires (B1678CQF), Argentina
afraidenraich@untref.edu.ar

2Departamento de Computación, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires / CONICET
Pabellón 1, Ciudad Universitaria, CABA (C1428EGA), Argentina
emocskos@dc.uba.ar

3Centro Regional de Ciencias Nucleares do Nordeste/CRCN-NE
Av. Prof. Luiz Freire, 2000, CDU 50740-540 Recife. Pe. Brasil
falima@cnen.gov.br

Key words: Open Channel, Control Problem, Flooding, FEM

Abstract. This paper presents a new numerical method to solve the control problem of the flooding propagation in shallow water conditions. The direct and inverse problem is solved using similarity between both differential equations. The mass conservation equation and the momentum are included using an explicit Taylor-Galerkin method. Some tests are performed in order to validate the system: shockwaves propagation, solitaire waves and simple waves. The results are validated against the classical solution.

Moreover, the source terms are verified (wind, Coriolis and topographical variations). The results include isocontour of adjoint functions and sensibility coefficients to validate the differential system. The adjoint and sensitivities results are in good agreement with respect to the results shown in Sanders and Katapodes [1]. The application is parallelized using OpenMP [2] with a shared memory architecture to treat some complex scenarios in reasonable time to avoid the imposed restrictions due to CFL conditions.

REFERENCES
