LOWER BOUNDS FOR PRINCIPLE EIGENVALUES OF
ELLiptic operaTors

IVANA ŠEBESTOVÁ¹ AND TOMÁŠ VEJCHODSKÝ²

Abstract. We present a general numerical method for computing two-sided bounds for principal eigenvalues of symmetric linear elliptic differential operators. The approach is based on the Galerkin method on the method of a priori-a posteriori inequalities, and on a complementarity technique. The two-sided bounds are formulated in a general Hilbert space setting. The abstract results are subsequently applied to Friedrichs', Poincaré and trace inequalities and fully computable two-sided bounds on the optimal constants in these inequalities are obtained. Accuracy of the method is illustrated on numerical examples.

References


¹Supported by MathMAC project. Charles University in Prague. e-mail: isebestova@ci2ma.udec.cl
²CI²MA, Universidad de Concepción, Concepción, Chile.
³Supported by RVO 67985840. Institute of Mathematics of the ASCR, v. v. i., e-mail: vejchod@math.cas.cz
Institute of Mathematics, Academy of Sciences, Prague, Czech Republic.