Multiscale Hybrid-Mixed Method for Porous Media Problems

Diego Paredes*, Frédéric Valentin**, Christopher Harder***

* Institute of Mathematics, Pontifical Catholic University of Valparaíso
 Blanco Viel 596, Cerro Barón, 2350-026, Valparaíso, Chile
 diego.paredes@ucv.cl

** Applied Mathematics Department, National Laboratory for Scientific Computing
 Av. Getúlio Vargas, 333, 25651-070, Petrópolis - RJ, Brazil
 valentin@lncc.br

*** Mathematical and Computer Sciences, Metropolitan State University of Denver
 Denver, CO 80217-3362, USA
 harderc@msudenver.edu

ABSTRACT

Multiscale Hybrid-Mixed (MHM) finite element method have been recently developed for several operators, including hydro-dynamics and reaction-advection-diffussion models. The MHM method is a consequence of a hybridization procedure, and emerges as a method that naturally incorporates multiple scales while provides solutions with high-order precision. The computation of local problems is embedded in the upscaling procedure, which are completely independent and thus may be naturally obtained using parallel computation facilities. We conclude that the MHM method is naturally shaped to be used in parallel computing environments and appears to be a highly competitive option to handle realistic multiscale parabolic boundary value problems with precision on coarse meshes. Numerical experiments will also be shown in order to support the theoretical results.

REFERENCES

