ASSESSMENT OF OPENFOAM SOLVERS IN AEROSPACE APPLICATIONS

Luis F. Gutiérrez¹, José P. Tamagno ² and Sergio A. Elaskar³

¹Departamento de Aeronáutica, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
Av. Velez Sarsfield 1611, Piso 2 Oficina 8
luisgutirrezmarcantoni@conicet.gov.ar

²Departamento de Aeronáutica, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba
Av. Velez Sarsfield 1611, Piso 2 Oficina 4
jose_tamagno@yahoo.com.ar

³Departamento de Aeronáutica, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
Av. Velez Sarsfield 1611, Piso 2 Oficina 10
selaskar@com.uncor.edu

Key words: Finite Volumes, High Speed Flow, openFoam, Central Schemes, PISO, AUSM

Abstract. Since its release openFoam (Open Field Operation and Manipulation) libraries, have been used for performing numerical simulations in a wide range of fluid dynamics problems. Initially, most of them in the subsonic range, however most recently, openFoam capabilities through implementation of different numerical techniques have been extended and focused on solving high speed compressible flow patterns. Between these techniques are highlighted: extension of PISO method, flux difference splitting techniques that involve Riemann solvers and flux vector splitting techniques that avoid the use of Riemann solvers (Kurganov central schemes and AUSM family schemes). In this paper, results applying them to problems of aerospace interest, (e.g blunt body, air intake, jet exhaust and impingement, etc.) are presented, and the advantages and failures of their application in the context of openFoam, are analyzed and discussed.