COMPUTATIONAL VADEMECUMS FOR REAL-TIME SURGERY

C. Quesada*, I. Alfaro*, D. González*, E. Cueto*, F. Chinesta†

* Aragón Institute of Engineering Research (I3A). Universidad de Zaragoza
María de Luna s/n, 50018, Zaragoza, Spain
CIBER-BBN-Centro de Investigación Biomédica en Red en Bioingeniería Biomateriales
y Nanomedicina, Zaragoza, Spain.
e-mail: {cquesada,iciar,gonzal,ecueto}@unizar.es, web page: http://amb.unizar.es

† ESI International Chair
GEM UMR CNRS – Ecole Centrale de Nantes
1 rue de la Noe, BP 92101, F-44321 Nantes cedex 3, France
Francisco.Chinesta@ec-nantes.fr

Keywords: Computational Surgery, Real time, model order reduction, proper generalized decomposition (PGD).

ABSTRACT

The concept of computational vademecum is explored with applications on computational surgery. An emphasis will be placed towards real-time applications, including haptic feedback for educational systems.

Computational vademecums are obtained after the solution of a high dimensional parametric problem in which every possible parameter is treated as a new coordinate in the phase space of the problem. Such a high dimensional problem needs for an efficient numerical solver in order to overcome the curse of dimensionality, i.e., the exponential grow in the number of degrees of freedom associated to mesh-based techniques such as finite elements, volumes or differences.

In our case we employ Proper Generalized Decomposition techniques (PGD), which allow for a very efficient solution of this class of problems and their subsequent real-time exploration. Examples will be shown on the performance of the method including material and geometric non-linearities, dynamics, contact, cutting, …

REFERENCES