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It is well known that oscillating tangential contacts exhibit frictional damping due to 
slip in parts of the contact. Solutions for this behavior in the case of spherical surfaces 
were given by Mindlin et al. in 1952. This contact damping plays an important role in 
numerous applications in structural mechanics, tribology and materials science. Since 
this damping arises due to partial slip in the contact of bodies with curved surfaces, 
when the coefficient of friction tends towards infinity, slip disappears, frictional losses 
are eliminated, and the oscillation damping becomes zero. However, when a contact 
oscillates in both normal and tangential directions, there is another, purely elastic loss 
mode that we refer to as “relaxation damping”. In its essence the proposed loss mech-
anism is similar to a spring that is deflected and abruptly released, converting the 
stored energy into elastic waves that are eventually dissipated.  Thus, an apparently 
non-dissipative system shows dissipation. The same will also happen in contacts that 
oscillate normally and tangentially at the same time, even if the motion is very slow 
(quasi-static). The rate of energy dissipation due to relaxation damping is calculated in 
a closed analytic form for arbitrary axially-symmetric contacts. In the case of equal 
frequency of normal and tangential oscillations, the dissipated energy per cycle is pro-
portional to the square of the amplitude of tangential oscillation and to the absolute 
value of the amplitude of normal oscillation, and is dependent on the phase shift be-
tween both oscillations. In the case of low frequency tangential motion with superim-
posed high frequency normal oscillations, the system acts as a tunable linear damper.  
 
Furthermore, we apply two different numerical methods to solve the problem for arbi-
trarily shaped surface topographies: the Method of Dimensionality Reduction (MDR) 
and the three-dimensional high-resolution boundary element method (BEM). Using 
these techniques, generalization of the results for macroscopically planar, randomly 
rough surfaces is discussed.  

 
 
 


