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Abstract
The plane Kirchhoff rod model is well known in continuum mechanics for the dynamic simulation of
slender structures. It is a geometrically exact generalisation of the linear Euler-Bernoulli beam that
takes into account extensional and bending deformations. In contrast to a Reissner rod [1], the rigid
cross sections always stay perpendicular to the centerline of mass centroids [2]. Therefore, it does not
incorporate transverse shear and is well suited for very slim structures.
We consider a Finite Element discretisation that is based on the discrete Kirchhoff beam kinematics
displayed in Figure 1. It is a 2D restriction of the one proposed in [2, 3] for 3D Kirchhoff and Cosserat
rods on a staggered grid. The proper choice of coordinates plays a crucial role concerning accuracy
and numerical complexity during time integration. Here, we compare three approaches, which are well
known in multibody dynamics simulations, and apply them to the proposed FE model.

Figure 1: Plane Kirchhoff beam kinematics. The directors zzzn are parallel to the discrete centerline tan-
gents xxxn − xxxn−1. The directors izzzn indicate the orientation of the cross section, perpendicular to the
centerline tangents. The position xxx0 and orientation zzz0 are prescribed as boundary values.

The first approach uses redundant absolute coordinates ppp = (zzz1,xxx1, . . . ,zzzN ,xxxN), where the xxxn ∈R2 stand
for the absolute translations (i.e. the cross section centroids) and zzzn ∈ S1 = {zzz ∈ C : ‖zzz‖2 = 1} ' SO(2)
for the absolute rotations (i.e. the cross section orientations). Complex numbers are used to enable
the extension to a quaternionic formulation for 3D Kirchhoff beams later. The shear rigidity and the
unity conditions for zzzn lead to internal holonomic constraints of the form ggg(ppp) = 000 with the d’Alembert
constraint forces GGG(ppp)>λλλ , where GGG(ppp) = ∇ggg(ppp). Then, the standard index 1 version of the equations of
motion takes the form [

p̈pp
λλλ

]
=

[
MMM(ppp) GGG(ppp)>

GGG(ppp) 000

]−1[ fff (ppp, ṗpp, t)
−ĠGG(ppp, ṗpp)ṗpp

]
(1)

with a state dependent mass MMM(ppp) and fff (ppp, ṗpp, t) incorporating the internal and external forces and mo-
menta. Due to the parametrisation of rotations by complex numbers, fff is free of trigonometric expres-
sions and therefore fast to evaluate. Solving the linear system of equations in (1) in each time step grows
with complexity O(N), as the structure is block-banded [4].
The second approach uses minimal relative (or ‘joint’) coordinates qqq = (w1,ξ1, . . . ,wN ,ξN), where
ξn = ‖xxxn−xxxn−1‖ for the relative translations and wn = ℑ(z̄zzn−1zzzn) for the relative rotations. In the context
of continuum mechanics, the magnitudes ξn correspond to the extensional strains, the wn to the bending
curvatures. This means that the strains are used as the primary unknowns instead of the displacements,



which is not standard. Let qqq = ψψψ(ppp) resp. ppp = ϕϕϕ(qqq) denote the forward resp. backward recursive coor-
dinate transformation. System (1) is then transformed to the equivalent form

M(qqq)q̈qq = ΦΦΦ(qqq)>
{

fff (ppp, ṗpp, t)−MMM(ppp)Φ̇ΦΦ(qqq, q̇qq)q̇qq
}
, M(qqq) = ΦΦΦ(qqq)>MMM(ppp)ΦΦΦ(qqq), (2)

where ΦΦΦ(qqq) = ∇ϕϕϕ(qqq) and ṗpp = ΦΦΦ(qqq)q̇qq. By the use of BDF multistep methods, it is not necessary to solve
(2) for q̈qq. However, the effort in linear algebra grows like O(N2), since the minimal mass M(qqq) is fully
populated [4, 5].
The third approach is formulated in terms of mixed coordinates, as it is called in [5]. The system

p̈pp
q̈qq
λλλ

ηηη

=


MMM(ppp) 000 GGG(ppp)> −ΨΨΨ(ppp)>

000 000 000 EEE
GGG(ppp) 000 000 000
−ΨΨΨ(ppp) EEE 000 000


−1

fff (ppp, ṗpp, t)
000

−ĠGG(ppp, ṗpp)ṗpp
Ψ̇ΨΨ(ppp, ṗpp)ṗpp

 , (3)

where ΨΨΨ(ppp) = ∇ψψψ(ppp), is equivalent to (1), the analytic solution for the artificial Lagrange multiplier
being ηηη ≡ 000. Solving the linear system of equations in (3) in each time step grows with complexity
O(N), as the structure is block-banded [4]. However, the bandwidth is larger than the one in (1).

Figure 2: Numerical task in terms of right-hand-side function evaluations (left) and Jacobian evaluations
(right) for a Kirchhoff rod with N = 25 elements and a rubber-like material.

The discussion of pros and cons for each of the formulations (1), (2) and (3) with respect to numerical
effort (e.g. function calls and time step sizes) and accuracy is part of the work. As an example, Fig-
ure 2 displays some statistical results that are typical in conjunction with the MATLAB time integrators
ODE15S, a BDF multistep method, and ODE45, an explicit Runge-Kutta method based on the scheme
of Dormand and Prince [6].
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