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Abstract
As the need to model flexibility arose in multibody dynamics, the floating frame of reference formulation
was developed. Usually, this approach is based on a geometrically linearized formulation and thus can
yield inaccurate results when elastic displacements become large. While the use of three-dimensional
finite element formulations overcomes this problem, the associated computational cost is overwhelming.
Consequently, beam models, which are one-dimensional approximations of three-dimensional elasticity,
have become the workhorse of many flexible multibody dynamics codes.
Numerous beam formulations have been proposed, such as the geometrically exact beam formulation,
the co-rotational formulation, or the absolute nodal coordinate formulation, to name just a few. New
solution strategies have been investigated as well, including the intrinsic beam formulation or the DAE
approach. Finally, Lie group concepts are playing an increasing role in the field. Clearly, a systematic
comparison of these various approaches is desirable and is the focus of this paper.

0.24 m
Bar 2

B
a
r 

1 B
a
r 3

A

B C

D

0
.1

2
 m Revolute joints

Beams

Misaligned

axis of rotation

 = 0.6 rad/s

Figure 1: Configuration of the four-bar mecha-
nism.

Various beam formulations have been assessed by
comparing their predictions for four benchmark prob-
lems [1]. The first problem is the Princeton beam ex-
periment, a study of the static large displacement and
rotation behavior of a simple cantilevered beam un-
der a gravity tip load. The second problem, the four-
bar mechanism, focuses on a flexible mechanism in-
volving beams and revolute joints. The third problem
investigates the behavior of a beam bent in its plane
of greatest flexural rigidity, resulting in lateral buck-
ling when a critical value of the transverse load is
reached. The last problem investigates the dynamic stability of a rotating shaft. The predictions of eight
independent codes are compared for these four benchmark problems.
The second benchmark problem will be described briefly; fig. 1 depicts a flexible four-bar mechanism.
Bar 1 is of length 0.12 m and is connected to the ground at point A by means of a revolute joint. Bar 2 is
of length 0.24 m and is connected to bar 1 at point B with a revolute joint. Finally, bar 3 is of length 0.12
m and is connected to bar 2 and the ground at points C and D, respectively, by means of two revolute
joints.
In the reference configuration, the bars of this planar mechanism intersect each other at 90 degree angles
and the axes of rotation of the revolute joints at points A, B, and D are normal to the plane of the



mechanism. To simulate an initial defect in the mechanism, the axis of rotation of the revolute joint at
point C is rotated by +5 degrees about unit vector ı̄2 indicated in fig. 1. The angular velocity at point A
of bar 1 is prescribed to be Ω = 0.6 rad/s for the duration of the simulation.
Bars 1 and 2 are of square cross-section of size 16 by 16 mm; bar 3 has a square cross-section of size 8 by
8 mm. The three bars are made of steel, whose mechanical characteristics are Young’s modulus E = 207
GPa and Poisson’s ratio ν = 0.3. These physical properties translate to the sectional stiffness properties
listed in table 1. The sectional mass properties are as follows: mass per unit span m00 = 1.997 and 0.4992
kg/m, moments of inertia per unit span m22 = m33 = 42.60 and 2.662 mg·m2/m for Bars 1 and 2, and Bar
3, respectively.

Table 1: Sectional stiffness properties of the bars
Axial Shearing Shearing Torsional Bending Bending
S [MN] K22 [MN] K33 [MN] H11 [N·m2] H22 [N·m2] H33 [N·m2]

Bar 1 & 2 52.99 16.88 16.88 733.5 1131 1131
Bar 3 13.25 4.220 4.220 45.84 70.66 70.66

A comprehensive set of results for the four proposed benchmark problems will be presented. The pre-
dictions of each of the eight codes used in this effort are found to be in excellent agreement with each
other. The focus of this paper is the assessment of the performance of the eight codes. Two fundamental
aspects of the formulation of beam elements for flexible multibody dynamics will be investigated: the
spatial and the temporal converge of the codes.
The spatial convergence of the codes is assessed easily by monitoring the error as a function of mesh size
for various types of elements. For instance, fig. 2 shows the error in the tip rotation of the Princeton beam
(the first benchmark problem) as a function of the number of degrees of freedom for linear, quadratic and
cubic elements. As expected, the convergence increases with the order of the element.
The temporal convergence of the time integrators is assessed easily by monitoring the error as a function
of time step size for various types of time integration schemes. For instance, fig. 3 shows the error in
the mid-span bending moments of the rotating shaft (the fourth benchmark problem) as a function of the
time step size for the generalized-α time integrator.
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Figure 2: Logarithmic plot of error in rota-
tion R3 versus DOF for three types of elements.
Linear(⃝), quadratic (△), and cubic (2) element.
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Figure 3: Logarithmic plot of error in mid-point
bending moment M3 versus time step size. The
generalized-α method is used as a time integrator.

The spatial and temporal convergence characteristics of the eight codes used in this effort will be pre-
sented in the final paper.
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