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Abstract
Nonlinear control systems with instantly changing dynamic behavior can be described by differential
equations ẋ = F(x,u,v) that depend on an integer valued control function v ∈L ∞(I,V ), mapping the
time interval I = [t0, t f ] to the integer values V = {1, . . . ,nV }. Such systems occur for example in
the optimal control of a driving car with different gears [1], or a subway ride with different operation
modes [2], leading to a mixed integer optimal control problem (MIOCP). A discretize-then-optimize
approach leads to a mixed integer optimization problem (MIOP) that is not differentiable with respect to
the integer variables, such that gradient based optimization methods can not be applied. Differentiability
with respect to all optimization variables can be achieved by reformulating the MIOCP, e.g. by using a
relaxed binary control function [2], or by introducing a fixed integer control function v̄N,n ∈L ∞(I,V )
and a time transformation tw ∈ W 1,∞(I, I) that allows to partially deactivate the fixed integer control
function [1]. The latter approach is presented here, while the main focus lies on new theoretical and
numerical results that take different functions v̄N,n into account. The time interval I is partitioned into
N major intervals I j and each I j = [t j−1, t j[ into n minor intervals Ii

j = [τ i−1
j ,τ i

j[. Then, the function v̄N,n

is defined to be constant on each minor interval Ii
j. Figure 1 depicts an example of such a fixed integer

control function. The depicted function is called consistent to every integer control function v, because a
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Figure 1: Example of a fixed integer control function v̄N,n with V = {1,2,3} and N = 3 major and n = 5
minor intervals

switch of v at any time in a major interval I j from a value l1 ∈ V to a value l2 ∈ V can be achieved with
v̄N,n by scaling the minor intervals Ii

j, in particular some minor intervals can be deactivated by scaling to
zero. The scaling is accomplished by a time transformation tw ∈W 1,∞(I, I) resulting from a time control
w ∈L ∞(I,R) with ∆I j =

∫
I j

w(s)ds and w(τ)≥ 0 for a.e. τ ∈ I. The time transformation with derivative

t ′w(τ) =
dtw
dτ

(τ) = w(τ) for a.e. τ ∈ I is defined by

tw(τ) := t0 +
τ∫

t0

w(s)ds, (1)

and assures that the mapping of a major interval is surjective tw(I j) = I j even if several minor intervals Ii
j

are deactivated, i.e. tw(Ii
j) has zero length. Then, the time transformed MIOCP is defined as follows:



Definition 1. (TMIOCP)

min
x,u,w

J∗(x,u,w) =
∫
I

w(τ)B(x(τ),u(τ), v̄N,n(τ)) dτ (2)

s. t. ẋ(τ) = w(τ)F(x(τ),u(τ), v̄N,n(τ)) for a.e. τ ∈ I (3)

g0(x(τ),u(τ))≤ 0 for a.e. τ ∈ I (4)

w(τ)g(x(τ),u(τ), v̄N,n(τ))≤ 0 for a.e. τ ∈ I (5)

r(x(t0),x(tN)) = 0 (6)

w(τ)≥ 0 for a.e. τ ∈ I (7)

∆I j =
∫
I j

w(s)ds (8)

Here, J is the objective functional, g0 and g are inequality constraints and r represents the boundary con-
ditions. An example demonstrates that solving a TMIOCP using a control consistent (CC) fixed integer
control function v̄N,n can lead to a lower number of discretization variables as a TMIOCP that utilizes a
fixed integer function that is not control consistent (NCC). The number of necessary discretization vari-
ables depends on the total number of used minor intervals and it is shown that the total number can be
unbounded in the NCC case and is bounded in the CC case, even though the number of minor intervals
for each major interval is lower in the NCC case. As a numerical example, a hybrid mass oscillator is
considered (Figure 2 (a)), that extends the example given in [3] to three springs. The springs are mounted
in parallel and relaxed in different positions. A mass is fixed on the first spring, and the second and third
springs are activated and deactivated depending on the position of the mass. A minimization with un-
specified end position results in the CC case in the expected oscillating trajectory with almost no control
effort. In contrast, the locally optimal trajectory in the NCC case avoids specific switches in the interior
of major intervals by oscillating with a low amplitude and needs a high control effort. The state trajecto-
ries are plotted in Figure 2 (b) and (c). An extension to bipedal walking models is planed in future works.

(a) hybrid mass oscillator (b) J∗(u) = 6.0520911696 ·10−11 (c) J∗(u) = 3.7453160945 ·108
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Figure 2: (a) Sketch of the hybrid mass oscillator. (b) Locally optimal discretized state trajectory of the
hybrid mass oscillator in the CC case and (c) in the NCC case.

References
[1] M. Gerdts. A variable time transformation method for mixed-integer optimal control problems.

Optimal Control Applications and Methods, Vol. 27, No. 3, pp. 169–182, 2006.

[2] S. Sager, H.G. Bock, G. Reinelt. Direct methods with maximal lower bound for mixed-integer
optimal control problems. Mathematical Programming, Vol. 118, No. 1, pp. 109–149, 2009.

[3] K. Flaßkamp, S. Ober-Blöbaum. Variational Formulation and Optimal Control of Hybrid La-
grangian Systems. Proceedings of the 14th international conference on Hybrid systems: Compu-
tation and Control, pp. 241–250, Chicago, Illinois, 2011.


