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Abstract
The combination of symbolic and numeric techniques affords promising advantages for the dynamic
simulation of mechanical systems. Symbolic tools using exact arithmetic are valuable when predefined
algebraic expressions or moderately sized systems must be manipulated. On the other hand, when large
problems must be solved or a preprocessing stage is undesirable, numeric implementations based on
floating-point numbers tend to be more effective. In this work, we present a method for the automatic
modeling of multibody systems using natural coordinates and combined symbolic–numeric techniques,
as a generalization and significant advancement of the work previously reported by Uchida et al. [1].

The natural coordinates are partitioned into independent and dependent sets, and Gröbner bases are used
to triangularize the resulting nonlinear constraint equations in a way that resembles the Gaussian elim-
ination procedure for systems of linear equations. The resulting triangular system is used to solve the
finite displacement problem [2] analytically, recursively calculating the dependent coordinates (qd) given
the independent ones (qi) at every time step of the simulation. The benefits of this approach are three-
fold. First, constraint equations are satisfied to within machine precision at all times and, thus, energy
conservation is facilitated. Secondly, the finite displacement problem is solved in a fixed amount of time,
which is ideal for real-time applications. Finally, when constraints are formulated using natural or fully
Cartesian coordinates [3] (as opposed to absolute or joint coordinates), the triangularization process is
particularly efficient due to the maximally quadratic nature of constraints in natural coordinates [1].
In the presented algorithm, the selection of natural coordinates (which is often done heuristically in the
literature) and the generation of a valid set of triangular solutions are fully automated. We address the
following computational challenges:

• Detection and resolution of motion singularities;
• Generation of multiple triangular systems for different coordinate partitions;
• Management of redundant (but compatible) constraint equations;
• Optimization of the coordinate selection towards fast dynamic simulation; and
• Interfacing between symbolic and numeric computational tools.

We generate an ensemble of triangular systems, each being associated with a different set of independent
and dependent coordinates. Upon solving the position-level kinematics symbolically and exporting the
ensemble of triangular systems, the embedding [4] or matrix-R [5] technique is applied, which involves
assembling the Jacobian matrix of constraint equations symbolically and computing a basis of the Jaco-
bian matrix nullspace numerically. This basis is then used to solve the velocity-level kinematics problem
and, with the other dynamic terms, to form the state-space dynamic equations, with one differential
equation per degree of freedom (DOF). An overview of the algorithm is shown in Figure 1.

The validity of the coordinate partitioning is monitored in real time through the column rank of the
dependent Jacobian matrix (ΦΦΦd

q), which should always equal m = n− f . Note that ΦΦΦ is the vector of con-
straint equations, n is the number of natural coordinates, and f is the number of DOFs. At the beginning
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Figure 1: Overview of symbolic (left) and numeric (right) components of our algorithm for the automatic
modeling of multibody systems using natural coordinates.

of the simulation, the lowest-cost triangular system is selected. Whenever ΦΦΦ
d
q becomes ill-conditioned

due to a deterioration of the coordinate partition, the algorithm performs Gaussian elimination with full
pivoting on the Jacobian matrix, yielding a new set of independent (and dependent) coordinates. The
corresponding triangular system is then adopted for solving the finite displacement problem.

Three numerical examples are used to present the theory and validate the modeling environment. First,
a 1-DOF pendulum is used throughout the theoretical development to describe the proposed approach.
A closed-loop, 1-DOF, revolute–spherical–cylindrical–revolute (RSCR) mechanism is then analyzed.
Finally, a 2-DOF landing gear system is simulated.

Novel ideas and implementation details are presented and evaluated for the general-purpose symbolic–
numeric simulation of multibody systems using natural coordinates and Gröbner bases. The entire model-
ing process, from the system definition to the dynamic simulation, by way of position- and velocity-level
kinematics, is thoroughly addressed.
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