
ECCOMAS Thematic Conference on Multibody Dynamics
June 29 - July 2, 2015, Barcelona, Catalonia, Spain

Enhancing the Performance of the Divide-and-Conqure Algorithm
When Forming and Solving the Equations of Motion for Multibody Systems

Jeremy J. Laflin∗, Kurt S. Anderson#, Michael Hans∗

∗Computational Dynamics Lab
Rensselaer Polytechnic Institute
110 8th Street, Troy, NY, USA
laflij@rpi.edu, hansm@rpi.edu

#Professor of Aerospace Engineering
Rensselaer Polytechnic Institute
110 8th Street, Troy, NY, USA

anderk5@rpi.edu

Abstract
Since computational performance is critically important for simulations to be used as an effective tool
to study and design dynamic systems, the computing performance gains offered by GPUs cannot be ig-
nored. The GPU has been used to increase the computational performance of many tasks necessary to
simulate multibody systems [1–5]. Since the GPU is designed to execute a very large number of simul-
taneous tasks (nominally Single Instruction Multi-Data (SIMD)), recursive algorithms in general, such
as the DCA, are not well suited to be executed on GPU-type architecture. This is because each level of
recursion is dependent on the previous level. Therefore, all tasks associated with the algorithm cannot
be executed independently. The primary issue is the large amount of data transfer that must occur when
moving from one level of recursion to the next. However, there are some ways that the GPU can be
leveraged to increase computational performance when using the DCA to form and solve the equations
of motion for articulated multibody systems with a very large number of degrees-of-freedom.

Computational performance of dynamic simulations is highly dependent on the nature of the underlying
formulation and the number of generalized coordinates used to characterize the system. If not done in-
telligently, multibody formulations, due to their kinematic coupling between the equations, require cubic
(O(N3) with N generalized coordinates) computational expense per temporal integration step to form the
equations of motion and subsequently solve for the system state derivatives. Therefore, algorithms that
scale in a more desirable (lower order) fashion with the number of degrees-of-freedom are generally pre-
ferred when dealing with large (N � 10). However, the utility of using simulations as a scientific tool is
directly related to actual compute time. The DCA, and other top performing methods, have demonstrated
desirable scaling properties of the compute time required being linear (O(N)) with increasing number of
degrees-of-freedom (N) and sublinear (O(log(N)) performance when implemented in parallel. However
for the DCA, total compute time could be further reduced by exploiting the large number of independent
operations involved in the first few levels of recursion.

Leaf Bodies

A
ss

em
bl

y
D

isassem
bly

Body1:8

Root Body

Body1:4 Body5:8

Body1:2 Body3:4 Body5:6 Body7:8

Body1 Body2 Body3 Body5 Body6 Body7 Body8Body4

Figure 1: Assembly and Disassembly



For articulated multibody systems, the DCA is often implemented in a binary tree structure, see Fig. 1,
and consists of two key tasks, assembly and disassembly. In the assembly sweep, the inertial properties
and applied loads of adjacent bodies are assembled to produce the inertial properties and applied loads
of a fictitious assembled-body. In the disassembly portion of the algorithm, the constraint forces in the
system are determined, which requires that the inertial properties of the assembled-bodies be disassem-
bled. Since the assembly (disassembly) processes for one pair of bodies is uncoupled from the assembly
(disassembly) process of another pair of bodies (at the same level of recursion), the DCA would benefit
from implementing the assembly and disassembly processes on GPU architecture for those levels that
contain a relatively high number of bodies. For systems with a very large number of degrees-of-freedom,
a much larger number of uncoupled assembly and disassembly processes can be executed in parallel
on a GPU-type device than can be done in parallel using a traditional Central Processing Unit (CPU),
even with many cores. However, after the assembly and disassembly operations have been performed
for these levels, and the number of bodies per level decreases rapidly as

(1
2

)L (where L is the number of
levels traversed by the algorithm) so, these operations are more efficiently executed on the CPU.

A simple chain-type pendulum example is used to explore the feasibility of using the GPU to execute
the assembly and disassembly operations for the levels of recursion that contain enough bodies for this
process to be computationally advantageous. A multi-core CPU is used to perform the operations in
parallel using Open MP for the remaining levels. The number of levels of recursion that utilizes the GPU
is varied from zero to all levels. The data corresponding to zero utilizing the GPU provides the reference
compute-time in which the assembly and disassembly operations necessary at each level are performed
in parallel using Open MP. The computational time required to simulate the system for one time-step
where the GPU is utilized for various levels of recursion is compared to the reference compute time also
varying the number of bodies in the system. A decrease in the compute-time when using the GPU is
demonstrated relative to the reference compute-time even for systems of moderate size.

References
[1] N. Khude, I. Stanciulescu, D. Melanz, and D. Negrut. Efficient Parallel Simulation of Large Flex-

ible Body Systems With Multiple Contacts. Journal of Computational and Nonlinear Dynamics,
8(4):041003, Mar. 2013.

[2] H. Mazhar, T. Heyn, and D. Negrut. A scalable parallel method for large collision detection problems.
Multibody System Dynamics, 26(1):37–55, 2011.

[3] D. Melanz, N. Khude, P. Jayakumar, and D. Negrut. A Matrix-Free Newton–Krylov Parallel Im-
plicit Implementation of the Absolute Nodal Coordinate Formulation. Journal of Computational
and Nonlinear Dynamics, 9(1):011006, Oct. 2013.

[4] D. Negrut, R. Serban, H. Mazhar, and T. Heyn. Parallel Computing in Multibody System Dynamics:
Why, When, and How. Journal of Computational and Nonlinear Dynamics, 9(4):041007, July 2014.

[5] D. Negrut, A. Tasora, H. Mazhar, T. Heyn, and P. Hahn. Leveraging parallel computing in multibody
dynamics. Multibody System Dynamics, 27(1):95–117, 2012.


