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Abstract 
In recent years, authors Udwadia et al. [1] have proposed to obtain dynamical equations using 
Lagrange method with generalised parameters as quaternions q. In 2014, a different point of view was 
applied by the actual author to treat (friction) problems whatever the nature of the parameters e.g. 
quaternions. Since rigidity is not included, the msain aim is the necessary use of stress tensor in the 
Virtual Work Principle (VWP), then its elimination for rigid bodies. Here we propose to show the 
applicability of our method to an example involving friction expressed by inequality relations. In this 
paper it is highlighted the fundamental difference between constraints issued from rigidity or friction. 
 
Background. If body forces are not present for simplicity, the VWP is written for a body B 
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where ρ  is the density, a the acceleration, ϕ  the surface forces, σ  the stress tensor, and v the virtual 

piecewise displacements. In the present application of some rotational motion, x=R(q(t))X, x being the 
actual position of the particle X, the virtual displacements are v=(R’i R-1x)wi where the wi’s are 
arbitrary and R is a 3x3 matrix function of quaternions. R’I is the partial derivative of R(q1,…,qn). R is 
not necessarily a rotation, i.e. the constraint qTq=1 is not fulfilled as an a priori condition. 

If we take account of the actual virtual displacements in the above formula,, then the first term is the 
virtual work (denoted Liwi) of acceleration, where Li is  obtained by Lagrange usual formula as a 
function of kinetic energy. Then we have  
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where Si and Ai are resp. the symmetrical and anti-symmetrical parts of the matrix R’i R
-1. The last 

equality does not contain the matrix Ai since σ  is symmetric and Ai is anti-symmetric. Now in order 
to eliminate the stress tensor, we require the relations Siwi=0.(sum on i), a priori realised if R is a 
rotation. In addition, it is seen that surface forces f occur by global quantities only (i.e. R(f) and M(f)). 
So the following compatibility conditions result: whatever the wi’s such that Siwi=0, we have 

 [-Li+M(f) ai]wi=0   (sum on i) 
(ai: dual vector of matrix Ai) under the only above hypotheses. 
 
Finally we write the rigidity constraint (the material constitutive law) qTq=1 since quaternions are 
used. It is noteworthy that no undue hypothesis of the virtual work of internal forces was made in our 
paper. Now we apply these relations to a contact problem. 
 

Example: contact with friction. We consider an homogeneous rigid wheel (centre O, radius r and 
mass m) rolling in a vertical plane O0x0y0  on an inclined line (or surface) O0X0 under the gravitational 
acceleration g downwards, the gravitational force being (f=-mgy0) applied on the centre O of the 
wheel. We use the referential Ref=O0X0Y0Z0 with the angle between O0x0 and O0X0 noted a . Two-
dimensional Euler parameters (p,q) are introduced to specify the rotation of the wheel, so writing for 
the matrix R 

R11=R22=1-2q2  ,  R12=-R21=-2pq  ,  R-1=RT/ ∆    ,   ∆ =1+4q2(p2+q2-1 

Now we introduce the virtual coefficients (wx,wy,wp,wq) associate to the parameters (x,y,p,q) and the 
condition wiSi=0, i.e.   pwp+qwq=0 . Under the above condition, the VWP is writing 
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.ρ∫ -mgy0 .v(O)+Tv1(A)+Nv2(A)=0 

where (T,N,0) are the components of the two-dimensional contact force on the wheel applied at the 
contact point A. Now we must use the contact law of friction, by example in the hypothesis of a 
bilateral contact (y=r)  at the point A=(x,y-r,0) of the wheel, implying the geometric constraint y=r  , 
together with the Coulomb law of friction equivalent to the inequality of Duvaut and Lions 
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First the parameters are specified such that wx=wp=wq=0 , satisfying  wiSi=0. It results v(x)=(0,wy,0) 
so that by taking account of the bilateral contact y=r  

mgcosa-N=0 and K& +mgsina x& + )(1 AuNk =0 

dxva
B
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that is available whatever the parameters ),,( qpx www . After some straightforward calculus, the 
acceleration term  is obtained under the form 

∫B dxva.ρ = 2
122211 22 qbqpaqapawxm x &&&&&&&&& ++++  

qqpqqp qwmrbpwqwmrawqppqmrapqwwqmra 22
12

222
22

22
11 4,)(2,)4(2,)(2 =+=++=+=  

Taking account of this expression, the differential variational inequality follows  
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(where qp αα ,  and A,B are given functions) under the compatibility condition pwp+qwq=0. That is the 

basic relation to solve the problem completed naturally by initial conditions on velocities (and 
positions). The numerical treatment of this inequality is not the aim of this present mechanical work. 

Conclusion. The present work has presented a natural link existing between Analytical Dynamics and 
Continuum Mechanics. The key of our scheme was the use of the Virtual Work Principal. Then the 
elimination of Cauchy stresses introduces compatibility relations between virtual coefficients. 
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