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Abstract
Marker-based motion capture systems are often used to determine the kinematics of the skeletal motion
of a human body. However, they are known to be affected by skinmovements which can cause significant
errors of measurement. In this paper we analyze a method for reconstructing bone motion by tracking
the pressure points of given bone landmarks on camera-tracked pressure foils [1], [2]. In the spatial case,
the contact-relevant regions of bone landmarks (e.g. epicondyles) can be approximated by ellipsoids,
and the pressure points are given by plane coordinates of thepressure foils with respect to a moving
rigid plane. In the planar case, which is analyzed in this paper, the ellipsoids become ellipses and the
foil pressure sensors become lines (Fig. 1). Assuming that the pressure points of three bone landmarks
are tracked, and that lines as well as distancessi along the lines of the pressure points are given, the
question is which poses of the rigid body may be rescued from the given measurements. Note that as the
compression of the soft tissue between pressure foils and bone landmarks is unknown, the distance along
the common normal of pressure line and bone landmark profile is a dependent variable. Thus the problem
is very similar to the 3PPR planar parallel manipulator, analyzed in [3], where the legs can be viewed
as circle contacts with the lines and the centers of the revolute joints. As shown in [3], for given lines
and distancessi along the lines, there are always exactly two possible posesof the center body (termed
"manipulator"). Thus the problem analyzed here is a generalization of [3] by exchanging the three circles
by three ellipses. As will be seen, this leads to completely different qualitative solutions.
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Figure 1: 2D pose detection of rigid body using
pressure point tracking along given lines
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Figure 2: Sample configuration of 3PPR parallel
manipulator [3] with its two possible solutions

The constraint equations of the system shown in Fig. 1 can be computed as follows
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for i = 1..3. Eqn. (1) represents the equation of an ellipseEi with center pointxci and the 2×2 diagonal
matrix A = Diag( 1

a2 ,
1
b2 ) with the semi-major axisa and the semi-minor axisb, which is rotated about

RRi w.r.t an inertial systemK0. R = Rot[z,ϕc] defines the pure rotationϕc of the rigid body w.r.t.K0,
whereasRi = Rot[z,αi] defines the rotationαi of the ellipse w.r.t. the rigid body frameKc. xi describes



an arbitrary point on the surface ofEi. The constraint equation (2) implies that the gradient of the ellipse
Ei at pointxi should be parallel to the normal vectornTi

of line Ti, whereλi is an arbitrary scalar. Finally
Eqn. (3) constrainsxi to be on the lineGi passing through the specified pointxpi and is normal tonGi

.
The ellipse centers result asxci = xc +R∆r̄i, wherexc = [xc,yc]

T are the coordinates of the rigid body
center and∆r̄i is the vector from the body center to the ellipse center in body-fixed coordinates.
In order to find all possible solutions of Eqns. (1) to (3), Groebner bases (see chapter 3 of [4]) were
used to eliminate all intermediate variables such asλi and generate reduced polynomials in terms of the
three unknown pose variables(xc,yc,ϕc) of the rigid body frameKc. This was achieved after introducing
auxiliary variabless and c for the trigonometric functions sinϕc and cosϕc with additional constraint
s2+ c2 = 1 and using the Gröbner base library of MAPLE with "PLEX" termorderc ≺ s ≺ yc ≺ xc.
As a result, 32 solutions where found for the symmetric case of Fig. 1, of which 16 were complex and
16 were real. Fig. 3 shows an example of 8 pairs of real solutions. A pair consists of two solutions
with the same position(xc,yc) of frame Kc. For each solution, the contact point at the line and its
corresponding point at the ellipse are marked with a different marker for each line. Note that the solutions
are genuinely different, i.e. that they do not result from each other by cyclic transformations, as the
pressure point of each line is only associated to one unique ellipse. However, for the present application,
only one solution is physically meaningful, as the ellipse contact point must face the corresponding line
(black configuration in Fig. 3a). For a non-symmetrical casewith unequal ellipses, a total of different 64
solutions were found. However, the number of real solutionsfor the general case is still an open issue.
The results are also being generalized to the 3D case of pressure points between ellipsoids and planes.
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Figure 3: Example of 8 pairs of real solutions (black and gray, respectively) with equal center points
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