Geometrically based pseudo-inverse and reciprocal screws of the Jacobian of 4H mechanisms

R. Bartkowiak*, C. Woernle ${ }^{*}$
* Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Germany 18059 Rostock, \{rene.bartkowiak, woernle\} @uni-rostock.de

Abstract

Overconstrained single-loop mechanisms with $n \leq 6$ helical joints ($n \mathrm{H}$ mechanisms), see Fig. 1, are mobile with $f=1$ degree of freedom if the screw axes of the helical joints $\hat{\boldsymbol{a}}_{i}$ fulfill the first-order loopclosure condition $$
\boldsymbol{A}(s) \boldsymbol{\lambda}(s)=\underline{\hat{a}}_{n} \quad \text { with } \quad \boldsymbol{A}=\left[\underline{\hat{\boldsymbol{a}}}_{1} \ldots \underline{\hat{\boldsymbol{a}}}_{n-1}\right], \quad \underline{\hat{\boldsymbol{a}}}_{j}=\left[\begin{array}{c} \boldsymbol{a}_{j} \tag{1}\\ \widetilde{\boldsymbol{r}}_{j} \boldsymbol{a}_{j}+h_{j} \boldsymbol{a}_{j} \end{array}\right], \quad \boldsymbol{\lambda}=\left[\begin{array}{c} \lambda_{1} \\ \vdots \\ \lambda_{n-1} \end{array}\right], \quad \lambda_{i}=-\frac{\mathrm{d} q_{i}}{\mathrm{~d} q_{n}}
$$

here parametrised, without loss of generality, by the joint coordinate $s=q_{n}$ of the nth helical joint, in an open neighborhood of an actual position $s_{0}=q_{n 0}$ of the independent joint coordinate (with the notation $\widetilde{\boldsymbol{a}} \boldsymbol{b}=\boldsymbol{a} \times \boldsymbol{b}$).

Figure 1: Mechanism with n helical joints ($n \mathrm{H}$ mechanism)
Since the closure condition of an $n \mathrm{H}$ mechanism is an analytical function, the Taylor-series expansion of (1) yields an infinite number of equivalent algebraical conditions for the mobility of the mechanism, called the closure conditions of order $m=1, \ldots, \infty$ in the actual position of the mechanism, $s_{0}=q_{n 0}$. These closure conditions contain the derivatives of the joint screws, $\hat{a}_{i}, \hat{a}_{i}^{\prime}, \ldots$, and the ratios of the joint coordinates with respect to the independent joint coordinate, $\boldsymbol{\lambda}_{i}, \boldsymbol{\lambda}_{i}^{\prime}, \ldots$. The elimination of the joint coordinates with the help of a pseudo-inverse \boldsymbol{A}_{0}^{+}of the Jacobian \boldsymbol{A}_{0} and the reciprocal screws $\hat{\boldsymbol{k}}_{j 0}, j=$ $1, \ldots,\left(6-\operatorname{rank}\left(\boldsymbol{A}_{0}\right)\right)$ of the column screws contained in \boldsymbol{A}_{0}, thus (unit matrix \boldsymbol{I})

$$
\underline{\hat{\boldsymbol{k}}}_{j 0}^{\mathrm{T}} \Delta \boldsymbol{A}_{0} \stackrel{!}{=} 0 \quad \text { with } \quad \Delta=\left[\begin{array}{cc}
\mathbf{0} & \boldsymbol{I} \tag{2}\\
\boldsymbol{I} & \mathbf{0}
\end{array}\right], \quad j=1, \ldots,(7-n)
$$

yields a system of necessary mobility conditions, as shown in [2],

$$
\left.\begin{array}{lll}
m=1: & 0=\underline{\hat{\boldsymbol{k}}}_{j 0}^{\mathrm{T}} \Delta \underline{\hat{\boldsymbol{a}}}_{n 0} & \equiv g_{1}\left(\underline{\hat{a}}_{n 0}, \boldsymbol{A}_{0}\right) \tag{3}\\
m=2: & 0=\underline{\hat{\boldsymbol{k}}}_{j 0}^{\mathrm{T}} \Delta \boldsymbol{A}_{0}^{\prime} \boldsymbol{A}_{0}^{+} \underline{\hat{a}}_{n 0} & \equiv g_{2}\left(\underline{\hat{\boldsymbol{a}}}_{n 0}, \boldsymbol{A}_{0}\right) \\
m=3: & 0=\hat{\hat{\boldsymbol{k}}}_{j 0}^{\mathrm{T}} \Delta\left(-2 \boldsymbol{A}_{0}^{\prime} \boldsymbol{A}_{0}^{+} \boldsymbol{A}_{0}^{\prime}+\boldsymbol{A}_{0}^{\prime \prime}\right) \boldsymbol{A}_{0}^{+} \underline{\hat{\boldsymbol{a}}}_{n 0} & \equiv g_{3}\left(\underline{\hat{\boldsymbol{a}}}_{n 0}, \boldsymbol{A}_{0}\right) \\
& \vdots & \\
m: & 0=\ldots & \equiv g_{m}\left(\underline{\hat{\boldsymbol{a}}}_{n 0}, \boldsymbol{A}_{0}\right)
\end{array}\right\} \quad \boldsymbol{g}_{(m)}\left(\underline{\hat{a}}_{10}, \ldots, \underline{\hat{a}}_{n 0}\right)=\mathbf{0} .
$$

The derivatives of the matrix $\boldsymbol{A}_{0}=\left[\begin{array}{lll}\underline{\hat{a}}_{10} & \cdots & \underline{\hat{a}}_{n-1,0}\end{array}\right]$ with respect to s are expressed by the derivatives of the screw axes $\underline{\hat{a}}_{k 0}^{\prime}=\left.\frac{\mathrm{d} \hat{\mathbf{a}}_{k}}{\mathrm{~d} s}\right|_{n 0}$ using the dual vector product,

$$
\underline{\hat{\boldsymbol{a}}}_{k 0}^{\prime}=-\sum_{i=1}^{k-1} \widetilde{\hat{\boldsymbol{a}}}_{i 0} \underline{\hat{a}}_{k 0} \lambda_{i 0} \quad \text { with } \quad \underline{\tilde{\hat{a}}} \equiv\left[\begin{array}{cc}
\widetilde{\boldsymbol{a}} & \mathbf{0} \tag{4}\\
\widetilde{\boldsymbol{a}}_{\varepsilon} & \widetilde{\boldsymbol{a}}
\end{array}\right] .
$$

Due to the successively elimination of the joint coordinates, the mobility conditions (3) are nonlinear equations only in the coordinates $\hat{\underline{a}}_{i 0}, i=1, \ldots, n$ of the joint screws in the actual position of the mechanism. The solution of (3) up to an unknown sufficient finite order $m_{\max }$, depending on the number and type of joints, yields these screw coordinates of the joints which guarantee the finite mobility of the mechanism, see also [1]. For several overconstrained mechanisms an estimation of $m_{\max }$ by the numerical solution of (3) was given in [3]. One difficulty is to find a analytical solution of (3) because the pseudo-inverse \boldsymbol{A}_{0}^{+}as well as the reciprocal screws $\hat{\boldsymbol{\hat { k }}}_{j 0}, j=1, \ldots,\left(6-\operatorname{rank}\left(\boldsymbol{A}_{0}\right)\right)$ are not given in an algebraical form. But for 4 H mechanisms these expressions can be derived by geometrical considerations. The special pseudo-inverse of the Jacobian $\boldsymbol{A}_{0}=\left[\begin{array}{lll}\hat{\boldsymbol{a}}_{10} & \hat{\boldsymbol{a}}_{20} & \hat{\boldsymbol{a}}_{30}\end{array}\right]$ given by

$$
\boldsymbol{A}_{0, \text { geom }}^{+}=\beta\left[\begin{array}{lll}
\widetilde{\hat{\boldsymbol{a}}}_{20} & \underline{\hat{\boldsymbol{a}}}_{30} & \widetilde{\hat{\boldsymbol{a}}}_{30} \tag{5}\\
\hat{\hat{a}}_{10} & \widetilde{\hat{\boldsymbol{a}}}_{10} \underline{\hat{a}}_{20}
\end{array}\right]^{\mathrm{T}} \Delta, \quad \beta=\left(\widetilde{\hat{\boldsymbol{a}}}_{10} \underline{\hat{\boldsymbol{a}}}_{20}\right)^{\mathrm{T}} \Delta \hat{\hat{a}}_{30}
$$

contains the three screws $\underline{\hat{\tilde{a}}}_{20} \hat{\hat{a}}_{30}, \widetilde{\hat{\tilde{a}}}_{30} \underline{\hat{a}}_{10}, \widetilde{\hat{\boldsymbol{a}}}_{10} \underline{\hat{a}}_{20}$. The axes of these screws are the common perpendicular lines of two adjacent joint axes. By this, these screws are each reciprocal to two screws of the joint axes $\underline{\hat{\hat{a}}}_{10}, \hat{\underline{\hat{a}}}_{20}, \hat{\underline{\hat{a}}}_{30}$ of the 4 H mechanism. In the same way the three screws
$\hat{\boldsymbol{k}}_{10, \mathrm{geom}}=\widetilde{\hat{\boldsymbol{a}}}_{20} \underline{\hat{a}}_{30}+\left[\begin{array}{c}\mathbf{0} \\ h^{*} \widetilde{\boldsymbol{a}}_{20} \boldsymbol{a}_{30}\end{array}\right], \hat{\boldsymbol{k}}_{20, \text { geom }}=\widetilde{\hat{\boldsymbol{a}}}_{30} \hat{\boldsymbol{a}}_{10}+\left[\begin{array}{c}\mathbf{0} \\ h^{*} \widetilde{\boldsymbol{a}}_{30} \boldsymbol{a}_{10}\end{array}\right], \hat{\boldsymbol{k}}_{30, \mathrm{geom}}=\widetilde{\hat{\boldsymbol{a}}}_{10} \underline{\hat{a}}_{20}+\left[\begin{array}{c}\mathbf{0} \\ h^{*} \widetilde{\boldsymbol{a}}_{10} \boldsymbol{a}_{20}\end{array}\right]$,
with

$$
\begin{equation*}
h^{*}=-\frac{1}{\beta\left(\widetilde{\boldsymbol{a}}_{10} \boldsymbol{a}_{20}\right)^{\mathrm{T}} \boldsymbol{a}_{30}}, \tag{6}
\end{equation*}
$$

are reciprocal to the screws $\underline{\hat{\hat{a}}}_{10}, \hat{\underline{\hat{a}}}_{20}, \hat{\underline{\hat{a}}}_{30}$. There exist special positions of 4 H mechanisms where the geometrically based expressions $\boldsymbol{A}_{0, \text { geom }}^{+}$and $\hat{\boldsymbol{k}}_{j 0, \text { geom }}, j=1, \ldots, 3$ are not valid. These positions have to be excluded as start positions for the local approximation.
In a first step it can be shown for the BENNETT 4R mechanism, that the mobility condition as well as the closure condition of order $m=3$,

$$
\mathbf{0}=\left[\begin{array}{lll}
\hat{\boldsymbol{k}}_{10, \text { geom }} & \hat{\boldsymbol{k}}_{20, \text { geom }} & \hat{\boldsymbol{k}}_{30, \text { geom }} \tag{8}
\end{array}\right]^{\mathrm{T}} \Delta\left(-2 \boldsymbol{A}_{0}^{\prime} \boldsymbol{A}_{0, \text { geom }}^{+} \boldsymbol{A}_{0}^{\prime}+\boldsymbol{A}_{0}^{\prime \prime}\right) \boldsymbol{A}_{0, \text { geom }}^{+} \underline{\hat{\boldsymbol{a}}}_{40},
$$

are fulfilled, if the mobility conditions of order $m=1$ and $m=2$,

$$
\begin{align*}
& \mathbf{0}=\left[\begin{array}{lll}
\hat{\underline{\boldsymbol{k}}}_{10, \text { geom }} & \hat{\boldsymbol{k}}_{20, \text { geom }} & \hat{\boldsymbol{k}}_{30, \mathrm{geom}}
\end{array}\right]^{\mathrm{T}} \Delta \underline{\hat{\boldsymbol{a}}}_{40} \tag{9}\\
& \mathbf{0}=\left[\begin{array}{lll}
\hat{\boldsymbol{k}}_{10, \text { geom }} & \hat{\boldsymbol{k}}_{20, \text { geom }} & \hat{\boldsymbol{k}}_{30, \text { geom }}
\end{array}\right]^{\mathrm{T}} \Delta \boldsymbol{A}_{0}^{\prime} \boldsymbol{A}_{0, \text { geom }}^{+} \underline{\hat{\boldsymbol{a}}}_{40}
\end{align*}
$$

are fulfilled. This result can be obtained by introducing recursively the mobility conditions together with the properties of screw products, without explicitly solving the closure conditions.

References

[1] V. Alexandrov. Sufficient Condition for the Extendibility of an nth Order Flex of Polyhedra. Beiträge zur Algebra und Geometrie, 39:367-378, 1998.
[2] R. Bartkowiak and C. Woernle. Numerical Synthesis of Overconstrained Mechanisms Based on Screw Theory. J. Lenarčič and M. M. Stanišić, editors, Advances in Robot Kinematics, pages 539-546. Springer, Berlin, 2010.
[3] R. Bartkowiak and C. Woernle. Numerical Determination of a sufficient Local Approximation Order of Loop-Closure Conditions for Overconstrained Mechanisms. Eccomas Multibody Dynamics 2013. Book of Abstracts, pages 569-573. Proceedings: CD. Zagreb, Croatia, 2013-07.

