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Abstract

There is considerable interest in the generation of electricity by harnessing the energy from waves and

tidal streams [1]. The economic viability of these marine hydrokinetic (MHK) systems will depend on

the ability to deploy such systems at low cost. In environments where the water is deep (greater than

50 m), it becomes necessary to consider compliant mooring (slack mooring) of the MHK devices. This

paper details an approach to the modeling of networks of MHK devices that are secured via compliant

moorings [2].

The model will be constructed using a Lagrangian dynamics framework. A lumped parameter discretiza-

tion of the mooring lines will include the distributed effects of inertia, as well as hydrodynamic lift and

drag forces. The mooring line model will allow for slackness, i.e, zero line tension, and account for the

sea floor impenetrability constraints. In addition, the model construction will allow a network of mooring

lines, and multiple rigid bodies attached to the lines. It will be shown that this modeling approach leads

to a system of index-3 differential-algebraic equations (DAEs) with complementarity conditions.

Recently, Pecher et al. [2], and Fabien [4] presented static equilibrium analysis of compliant moored

systems; while Raman-Nair and Baddour [5] analysed a single buoy secured with multiple lines. The

analysis presented here considers the interaction multiple rigid bodies.

The main components of the system are: (1) rigid bodies; (2) mooring lines; and (3) body-fixed nodes,

fixed nodes and free nodes used to define the network of mooring lines. A schematic of the of a typical

model is shown below.
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This model shows 2 rigid bodies connected to each other and the sea floor via a network of mooring

lines. The drawing also shows body-fixed nodes, fixed nodes and free nodes.

Kinematics The kinematics of each rigid body is described using 3 translation degrees of freedom, and

three rotation degrees of freedom (via Euler angles). The ith mooring line in the system is divided in to

Ni segments using Ni + 1 nodes. Each node is described with 3 translation degrees of freedom. Thus,

there are 3(Ni +1) degrees of freedom associated with the ith mooring line.

Kinetics The rigid bodies can have asymmetric inertial properties as well as added mass components.

Moreover, the center of mass and the center of buoyancy need not be collocated. The mass of the line is

distributed at the Ni +1 nodes and added mass of the line segments are also taken into account.

Constraints The connections between the mooring lines and rigid bodies give rise to equality constraints.

The compliant mooring line condition gives rise to inequality constraints. Specifically, the compliant



mooring line condition implies that the distance between adjacent nodes in the line can increase, but this

distance can not be less than the undeformed length of the line segment. Thus, the mooring line will

exhibit a chain-like behavior. The requirement that the mooring lines, and the rigid bodies, remain above

the sea floor gives rise to additional inequality constraints.

Applied Forces The effects of the weight and buoyancy of each inertial element is accounted for in

the dynamic equations of motion. Also included are the effects of lift and drag on the system elements

due to motion relative to the fluid. Moreover, the fluid velocity is assumed to have spatial and temporal

variation.

Equations of Motion Let q(t) ∈ Rn be the system displacements, f (t) ∈ Rn be the system velocities,

T (q, f , t) be the kinetic energy, V (q) be the potential energy, D( f ) be the dissipation function, φ(q)∈Rm,

(m < n) be the equality constraints, ψ(q) ∈ R p be the inequality constraints, and es(t) ∈ Rn be the

applied forces. Then it can be shown that the equations of motion are given by a system of index-3 DAEs

of the form [3]

0 = q̇− f ,

0 = M(q, f ) ḟ +ϒ(q, f , t)+φ T
q λ +ψT

q µ − es,

0 = φ(q),

0 = µiψi(q), µi ≥ 0, ψi(q)≤ 0, i = 1,2, · · · , p.

Here, M(q, f )= ∂ 2T/∂ f 2, φq = ∂φ/∂q, ψq = ∂ψ/∂q, ϒ= (∂ (∂T/∂ f )/∂q) f +∂ (∂T/∂ f )/∂ t −∂T/∂q

+∂V/∂q +∂D/∂ f . The variables λ (t) ∈ Rm and µ(t) ∈ R p are Lagrange multipliers associated with

the equality and inequality constraints respectively. Note that the multipliers µi(t) are non-negative, and

the complementarity conditions µiψi(q) = 0, µi ≥ 0, and ψi(q) ≤ 0 makes these equations difficult to

solve.

The paper also presents a numerical integration scheme to solve these DAEs using an interior-point

method, which ensures that the inequality are satisfied at each time step.
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