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Abstract 

Dynamic simulation procedures of flight vehicle (fixed-wing, rotorcraft, UAV, satellite) 3D 

manoeuvres need robust and efficient integration methods in order to allow for reliable, and possibly 

real-time, simulation missions. Since flight vehicle 3D manoeuvres necessary include complete 3D 

rotation domain, such procedures also require an efficiency way of dealing with large 3D rotation. 

Usually, in this context, the simulation procedures built around the standard numerical ordinary-

differential-equations (ODE) based on three-parameters rotation variables (such as Euler angels) have 

their limitations, as they impose discontinuities or even singularities in the flight vehicle attitude 

integral curves. Most commonly, the quaternion representation is widely used in flight simulation to 

overcome the mentioned deficiency [1]. However, if quaternions are used for a parameterisation of the 

rotation manifold, the standard model leads to integration of differential-algebraic equations (DAE) 

that requires additional stabilisation of the algebraic constraint due to quaternions normalisation 

equation. Recently, a method of integration of rotational quaternions based on non-vectorial geometric 

Lie-group integration that leads to a minimal-form ODE integration (avoiding thus DAE integration) 

has been introduced in [2]. By adopting such an approach, the proposed method is based on numerical 

integration of the kinematic relations in terms of the instantaneous rotation vector that form an ODE 

on Lie-algebra so(3) of the rotation group SO(3), after which the integration incremental update on the 

configuration quaternion group Sp(1) is determined by the exponential map. Consequently, only a 

system of three independent ODEs is integrated and hence no stabilization of the unit-length constraint 

is necessary. 

In order to study rotational kinematics of a local frame rigidly attached to an airplane airframe, we 

start from the kinematic reconstruction equation )(
~

)()( ttt ωRR   that relates the angular velocity 
3)( Rtω  of the frame (aircraft’s angular velocity) and the time derivative of the frame rotation 

matrix )(tR (aircraft attitude matrix). The assignment of the skew symmetric matrix soω
~

 to the 

vector 3Rω  is an isomorphism of so(3) and 3R [3]. Similarly as Muthe-Kaas approach [4], we 

seek a solution of kinematic reconstruction equation in the form 
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where the Euler-Rodrigues formula [4] provides the closed form of the exponential mapping on SO(3) 
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and 3)( Rtu  is the scaled instantaneous rotation vector, and 
0

R  is initial attitude. Then, 

(3))(~ sot u  satisfies the ODE system in the Lie-algebra 
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where the operator 1
~dexp

u
 admits the series expansion (see [4]), 

u~
ad  is adjoint operator defined by 

the Lie-bracket and j
B are the Bernoulli numbers. 

Unit quaternions form a group which is isomorphic to the symplectic group Sp(1) as well as to special 

unitary group SU(2). The unit quaternion group is also isomorphic to the unit sphere in 4R , defined as 

  1q  | q 43  RS . The rotational motion of a frame is thus described by 3)q( St , where t 

denotes the time. The vector space of skew-symplectic quaternions  )(0, | (1) 4 0 wwRwsp  

as tangent space to 3)1( SSp  at the group identity, where w  is the conjugate of the pure quaternion 

w . Hence, sp(1) is the Lie-algebra of Sp(1), which is isomorphic to so(3). The Lie-algebra sp(1) is the 



set of pure imaginary quaternions isomorphic to 3R , so that an element (1)spw  can be assigned to 

a vector 3Ru . For so(3) this assignment was (3))(~ sot u . In order to ensure that sp(1), so(3), and 
3R  are isomorphic as Lie-algebras, the element (1))21,0( sp uw  is associated to the vector 

3Ru . This is very important, and a lapse frequently found in the literature, is to assign 

(1)),0( sp uw . In the proposed algorithm, by following equation (1), we express update for the 

step in the form 
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where the closed form of the exponential mapping on 3S  is given by [5] 
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and 
n

w  is element of Lie-algebra sp(1) associated to the incremental rotation vector, and 3R
n

u  is 

the n-th step incremental rotation vector that updates rotation, determined from 
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where the operator 1
~dexp 

 nu
is introduced in [4] and 

0

~
n

u is initial condition. These equations should be 

integrated within each integration step together with the equations of aircraft dynamics. Since (6) is an 

ODE defined in Lie-algebra, that is a vector space, any standard vector-space ODE integrator can be 

used. Actually, an order of accuracy of the overall algorithm depends only on the accuracy of the ODE 

integrator that is utilized for solving (6). 

For the prime case study a rotation motion of a general 6 DOF aviation airplane is selected. 

                                                                             
Figure 1: The change of airplane’s attitude 

quaternions as time functions.                                 

Figure 2: Error in the norm of quaternion unit-

length constraint equation.

By inspecting integral curves of the aircraft’s rotation (see Fig. 1), it is visible that all obtained results 

are smooth functions without any discontinuities. Moreover, although obtained directly by integration 

of 3 ODE in minimal form, geometry of the rotational unit-quaternion is preserved within ‘machine’ 

precision, without necessity of solving unit-length algebraic equation (this is illustrated by Fig. 2). 

Hence the formulation represents a singularity-free approach to the attitude dynamics. 
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