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Abstract
Absolute nodal coordinate formulation (ANCF) [1] is the method for dynamic analysis of the flexible
multibody systems that undergo large displacements, rotations and deformations. One of the important
feature of the ANCF is description consistent with the general continuum mechanics theory. This pa-
per presents results of the case study of modeling multilayer structures with fully parametrized ANCF
elements. This type of structures is often use to model composite materials in aerospace, automotive
and ship vehicles [2]. In the following considerations a standard fully parametrized ANCF planar beam
element [3] is used.

Figure 1: Two-layer beam structure.

Figure 1 presents a two-layer flexible body consists of two joined planar beam elements. In order to
create exact connection between elements, their position vectors have to be equal at each point P on the
common boundary, which may be written as:
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where rrrP
i and rrrP

j are position vectors of the point P on the elements, respectively, i and j. The element
i position vector can be expressed in terms of the element coordinates eeei as rrri = SSSeeei where SSS(ξi,ηi) is
the element shape functions matrix [3] that depends on element dimensionless coordinates ξi = xi/li and
ηi = yi/li for li being the element length. It should be noted that when both elements have equal lengths,
values of coordinates ξ i and ξ j are equal for the given point P. Therefore one can rewrite equation (1)
into more appropriate form (for elements lengths li = l j = l):
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where the condition ξi = ξ j = ξ is used and the constant values of the lateral dimensionless coordinates
are ηmin

i = −hi/(2l) and ηmax
j = h j/(2l), while hi and h j are elements heights. This equation has to be

satisfied for all values of ξ .
The planar beam element shape functions are cubic along the beam center-line and linear in transverse
direction, therefore to join elements exactly, four conditions are required in longitudinal direction and
two in transverse direction. Those conditions may be written as follows:
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where ξA = 0, so
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indicates the point A in Figure 1 while ξB = 1, so
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indicates B. Moreover, SSS,x and SSS,y are the shape functions matrix partial derivatives with

respect to x and y. One can notice, that the choice of conditions (3) is not unique. Moreover, it can be
shown that the substitution of conditions (3) into Equation (2) results in an identity. Therefore, the set
of conditions (3) allow to create a two-layer structure consists of two ANCF fully parametrized planar
beams with exact continuity of the displacement field. This procedure may be applied many times to
create a multilayer structure with arbitrary number of elements.
The set of Equations (3) provides twelve linear constraint equations that can be eliminated in the prepro-
cessing stage. It means that the body with elements arranged in layers have the same number of degrees
of freedom like the system with one layer. This is an important feature of presented approach, because
the number of the coordinates that are integrated is the same irrespective of the number of layers.
When the body is composed with many elements, which is the case in most practical applications, Equa-
tions (3) should be applied to each pair of adjoined elements i and j that form the multilayer section.
However, connectivity conditions between elements and constraints that connect flexible body with the
multibody system, should be applied only to the single layer to avoid constraints redundancy.
The same procedure may be use to create a multilayer model with other fully parametrized beam or plate
ANCF elements. For example the spatial ANCF beam introduced in [4, 5] has shape functions that are
cubic in longitudinal direction and linear in transverse directions. Therefore, it is sufficient to add two
vector conditions to Equations (3) for the gradient along z in the form rrrA

i,z = rrrA
j,z and rrrB

i,z = rrrB
j,z.

Presented approach was tested with several numerical examples of modal and static analysis and the
good agreement with reference results was observed. Moreover, when all elements in the structure have
the same material properties, the multilayer model is reduced to the single layer model with combined
height. For example the modal analysis of the simply supported beam, like one presented in Section 4.2.2
in Gerstmayr et al [6], shows that frequencies for given modes agree very well for two-layer and single
layer models.
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