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Abstract 

In the framework of multibody dynamics, the path motion constraint enforces a body to follow a 
predefined curve being its rotations with respect to a prescribed curve moving frame. For the 
definition of railway, tramway or roller coaster tracks an accurate description of their geometries is 
needed. Most often this is done by parameterization of the track centerline where a reference plane at 
which point the rails sit is required and consequently a curve moving frame must also be specified.  
Regardless on the requirement of a general curve geometry being needed to specify either a railway 
centerline, a rollercoaster spatial geometry or a path motion kinematic constraint, it is not only of 
importance to select a suitable interpolation scheme but also to use a robust definition of the curve 
moving frame. 
Depending on if the curve is used to set some geometric layout for the mechanical models or for to 
define kinematic constraints for multibody dynamics applications, higher order derivatives, with 
respect to the curve parameter, may be required. Therefore, using polynomial interpolation schemes, 
higher order polynomials may be required for an exact formulation of problem. Generally, higher or-
der interpolating polynomials lead to unwanted, and hardly controllable, oscillation of the curve 
geometry, i.e., small deviations of the positions of the nodal points lead to large variations of the curve 
geometry away from those nodes. On the other hand, lower order polynomials generally have a local 
geometric control but they may not have the order necessary to ensure the proper geometric continuity 
of the model or the parametric derivatives required in the formulation of a kinematic constraint. 
Therefore, a question arises where what are the minimal requirements that an interpolating polynomial 
should meet in order to be used in the definition of a path motion kinematic constraint. 
First the geometric description of the curve must allow the definition of a moving frame in which the 
tangent, normal and binormal vectors define an orthogonal frame. Both Frenet and Dabroux frames are 
candidates to play the role of the required moving frame [1,2]. As discussed by Tandl and 
Kecskemethy, both have singularities in general spatial curve geometries, as those required for 
rollercoaster analysis [3,4]. In this work the Frenet frame is used being the straight segments handled 
with the provision described by Pombo and Ambrosio [5]. 
Using the moving frame definition selected for this work a proper formulation for a path motion 
kinematic constrained is obtained. Such kinematic constraint imposes that a point of a rigid body 
follows a given curve and that the body itself does not rotate, or does it in a prescribed manner, with 
respect to the curve moving frame. Depending on the choice of coordinates used on the multibody 
formulation this kinematic constraint may be defined differently [6,7]. When Cartesian coordinates are 
used and the equations of motion are solved together with the second time derivative of the position 
kinematic constraints the definition of the Frenet frame requires the second derivative of the curve 
with respect to its arc length parameter while the acceleration constraints, i.e., the second time 
derivative of the kinematic constraint, requires the existence of a fourth derivative. In this sense, 
apparently fifth order polynomials are required to formulate properly the path motion kinematic 
constraint. 
The numerical integration of the equations of motion of a multibody systems entails the use of 
numerical integrators, such as Runga-Kutta, Gear or others, to undertake the forward dynamic analysis 



[8,9]. All numerical procedures used in the solution of the equations of motion and on their solution 
have a finite precision and ultimately lead to small errors that affect the precision of the solution. 
When dependent coordinates, such as Cartesian or Natural coordinates, are used only the acceleration 
constraints are explicitly used in the solution of the equations of motion being the position and 
velocity constraints fulfilled only if the numerical integration would be error free, being otherwise 
violated and leading to instabilities in the dynamic solution of the analysis [6]. By using stabilization 
procedures, such as the Baumgarte constraint stabilization method [10] or the Augmented Lagrangian 
Formulation [11] such constraint violations can be kept under control. By using a coordinate partition 
scheme the constraint violations can be eliminated [12]. 
The work here presented shows that this same procedures used to stabilize the constraint violations in 
the integration of the equations of motion of multibody systems formulated with dependent 
coordinates also allow for the use of interpolation schemes with polynomials that have an order lower 
than that required for the exact formulation of the path motion kinematic constraints. The presented 
results show that regardless of using interpolation schemes with higher order polynomials the 
constraint violations still grow to a point in which either stabilization or coordinate partition 
procedures are required. Furthermore, regardless of the order of the polynomial actually used for the 
prescribed motion constraint, when dependent coordinates, such as Cartesian coordinates, are used in 
the multibody dynamic formulation small numerical errors are always present in the numerical 
methods used to solve and integrate the equations of motion. This small discrepancies tend to 
accumulate ultimately leading to the violation of the kinematic constraints of the system. Therefore, 
the use of constraint stabilization or correction methods is unavoidable independently of the order of 
the interpolation scheme used. It is shown that when constraint stabilizations methods are used there is 
no significant difference in the constraint violations between interpolating polynomials of higher and 
lower order, provided that they satisfy the continuity required for the definition of the curve moving 
frames and for the geometric requirements of the model. 
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