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Abstract

This work concerns the existence and uniqueness of the acceleration and Lagrange multipliers for La-
grangian systems subject to sliding Coulomb’s friction with bilateral and unilateral constraints. Focus is
put on providing sufficient conditions for singularities like Painlevé paradoxes to be avoided. Explicit
criteria, in the form of upper bounds on the friction coefficients, are given so as to preserve the well
posedness of the frictional problem.

1 Problem formulation
The sliding friction problem consists in determining the acceleration q̈ and the contact forces λ of a
mechanical system given its state (q, q̇) and all other efforts F(q, q̇, t) such that the following dynamics
is satisfied,

M(q)q̈+F(q, q̇, t) = ∇hn,b(q)λn,b +∇hn,u(q)λn,u +Ht,b(q)λt,b +Ht,u(q)λt,u
0≤ hn,u(q)⊥ λn,u ≥ 0
hn,b(q) = 0
λt,i =−µi sgn(vt,i)|λn,i|.

(1)

We consider mu unilateral (inequality) constraints hn,u(q) ∈ Rmu . The matrix ∇hn,u(q) collects on each
column the gradient for each unilateral constraint, and thus corresponds to the transpose of the Jacobian of
hn,u(q). The matrix Ht,u(q) maps local tangent frames at the contact points to the generalized coordinates,
vt,i = Ht,u,i(q)T q̇. The vector of Lagrange multipliers λn,u ∈ Rmu corresponds to the normal part of the
contact force, its tangential counterpart λt,u is driven by the sliding (single valued) Coulomb friction law.
We consider also mb bilateral (equality) constraints hn,b(q) ∈ Rmb .
Frictionless case Under the assumption of a non-singular mass matrix and linearly independent con-
straints, the frictionless problem is well-posed. It boils down to the following Linear Complementarity
Problem (LCP),

0≤ λn,u ⊥ Ac(q)λn,u +wc(q, q̇, t)≥ 0, (2)

where Ac(q) = Anu(q)−Anbnu(q)T Anb(q)−1Anbnu(q) is the Schur complement of Anb(q) in(
∇hn,b(q)T

∇hn,u(q)T

)
M(q)−1(∇hn,b(q) ∇hn,u(q)) =

(
Anb(q) Anbnu(q)

Anbnu(q) Anu(q)

)
,

and is thus symmetric positive-definite. Therefore the LCP in (2) has a unique solution for any input
vector wc(q, q̇, t) [3].
Sliding friction case In the sliding friction case all contacts are closed, frictional and with a non-zero
sliding velocity. To handle this case, we convert problem (1) into an LCP with a certain matrix Mµ

ub(q).
This matrix is then split as Mµ

ub(q) = M0
ub(q)+Θµ(q) where M0

ub(q) is a P-matrix whose blocks appear in
the frictionless problem and

∥∥Θµ(q)
∥∥ tends to zero as the friction µi goes to zero for each contact. Then

using a theorem of [2] which states that a small perturbation of a P-matrix remains a P-matrix, we derive
sufficient conditions on the friction coefficients for the matrix Mµ

ub(q) to remain a P-matrix.

To convert (1) into an LCP the first step is to introduce slack variables λ+ =
|λn,b|+λn,b

2 and λ−=
|λn,b|−λn,b

2
which cast the piecewise linearity of the absolute value into a complementarity formalism [1]. The



equation for the contact forces then becomes a Mixed LCP (MLCP) of the form
(Anb−Atb[µbξb])λ

+− (Anb +Atb[µbξb])λ
−+(Anbnu−Anbtu[µuξu])λnu +w1 = 0

0≤ (Anunb−Anutb[µbξb])λ
+− (Anunb−Anutb[µbξb])λ

−+(Anu−Atu[µuξu])λnu +w2 ⊥ λnu ≥ 0

0≤ λ+ ⊥ λ− ≥ 0,
(3)

where the notation [µξ ] refers to the diagonal matrix with entries µisgn(vt,i). An important observation

is that if max1≤i≤mb µb,i < µb
max(q)

∆
= σmin(Anb(q))

σmax(Atb(q))
, then the matrix Anb−Atb[µbξb] is positive-definite and

the MLCP in (3) boils down to the LCP

0≤
(

λ−

λnu

)
⊥
(

A−1Ā −A−1B
CA−1Ā−C̄ D−CA−1B

)
︸ ︷︷ ︸

∆
=Mµ

ub(q)

(
λ−

λnu

)
+

(
z1
z2

)
≥ 0, (4)

where σmin,max() denote the minimum and maximum singular values of a matrix, A ∆
= Anb−Atb[µbξb],

Ā ∆
= Anb +Atb[µbξb], B ∆

= Anbnu−Anbtu[µuξu], C ∆
= Anunb−Anutb[µbξb], C̄ ∆

= Anunb +Anutb[µbξb], D ∆
=

Anu−Atu[µuξu], z1
∆
=−A−1w1 and z2

∆
= w2 +Cz1. Introducing the Taylor series expansion of the matrix

A−1 is key to decoupling Mµ

ub(q) into a frictionless part M0
ub(q) and a frictional part Θµ(q). Let Kµ =

∑
∞
i=1(A

−1
nb Atb[µbξb])

i, then the blocks of Mµ

ub(q) may be decoupled as follows,

A−1Ā = I +2Kµ

−A−1B =−A−1
nb Anbnu +(I +Kµ)A−1

nb Anbtu[µuξu]−KµA−1
nb Anbnu

CA−1Ā−C̄ = 0−2Anutb[µbξb]+CKµ

D−CA−1B = Anu−AT
nbnuA−1

nb Anbnu−Atu[µuξu]+Anutb[µbξb]A−1
nb Anbnu

+C((I +Kµ)A−1
nb Anbtu[µuξu]−KµA−1

nb Anbnu).

Hence the frictionless part M0
ub(q)

∆
=

(
I −Anb(q)−1Anbnu(q)
0 Ac(q)

)
is retrieved in the decoupling and is

observed to be a P-matrix since Ac(q) is positive-definite. The remaining terms are collected in the matrix

Θµ(q)
∆
= Mµ

ub(q)−M0
ub(q), which is readily verified to be of first order in µ , that is

∥∥Θµ(q)
∥∥ tends to

zero as maxi(µb,i,µu,i) tends to zero.
We are now in a position to use Theorem 2.8 in [2] regarding small perturbations of P-matrices, to
expose a sufficient condition for the existence and uniqueness of a solution to problem (1). Defining for
an arbitrary matrix P the quantity β2(P)

∆
= maxd∈[0,1]n

∥∥(I− [d]+ [d]P)−1[d]
∥∥

2 as in [2], the following
can be stated.

Proposition 1. Let (q, q̇), F(q, q̇, t) be given and vt,i 6= 0 for all i. Suppose that M(q) is positive-definite,

that all constraints are independent, that the bilateral friction coefficients satisfy max1≤i≤mb µb,i < µb
max(q)

∆
=

σmin(Anb(q))
σmax(Atb(q))

, and that
∥∥Θµ(q)

∥∥
2 <

1
β2(M0

ub(q))
. Then there exists a unique solution (q̈,λnb,λnu) to the mixed

sliding friction problem (1).
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