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Abstract
This paper presents a novel recursive formulation for the simulation of constrained multibody system dy-
namics based on the Hamilton’s canonical equations. The systems under consideration are subjected to
holonomic constraints in generalized topologies, i.e.: serial chains, tree chains or closed-loop topologies.
The Hamilton’s canonical equations exhibit many advantageous features compared to their acceleration
based counterparts [1]. From the literature review [2], it also appears that there is a lack of parallel algo-
rithms for general multi-rigid body system dynamics based on the Hamiltonian approach. We consider
the Hamilton’s equations in the following standard form:

q̇ =

(
∂H

∂p

)T

(1a)

ṗ =−
(

∂H

∂q

)T

+Q−ΦΦΦ
T
q λλλ (1b)

ΦΦΦ(q) = 0 ⇒ Φ̇ΦΦ(q, q̇) = ΦΦΦqq̇ = 0 (1c)

where H – is the Hamiltonian, q, p – canonical generalized coordinates, Q – external forces,
ΦΦΦ

T
q – Jacobian matrix that shows the constrained directions, λλλ – Lagrange multipliers. The standard

set of Hamilton’s canonical equations (1) is slightly reformulated throughout the algorithm development
to conveniently make use of mixed canonical absolute and relative coordinates for the system state de-
scription. Specifically, Eq. (1a) is supplemented by the impulsive constraint forces σσσ (where σ̇σσ = λλλ ) and
joined together with the constraint equations at the velocity level (1c). The resulting algebraic equations
may be set together in the form of linear equations in terms of joint velocities and impulsive constraint
forces at joints. On the other hand, the equations of motion (1b) are somewhat rearranged in order to
obtain a direct dependence on the impulsive loads at joints.
The developed formulation leads to a two-stage procedure. In the first phase, the approach utilizes
divide and conquer algorithm (DCA) , i.e. a hierarchic assembly-disassembly process by traversing the
multibody system topology in a binary tree manner [3], [4]. The objective is to solve the equations for
the velocities and constraint impulsive loads at joints given the positions and momenta at joints. The
process exhibits linear O(n) (n – number of bodies) and logarithmic numerical cost, in serial and parallel
implementations, respectively. The time derivatives of the total momenta are directly evaluated in the
second step of the algorithm at the O(n) expense, sequentially, and at the constant cost O(1), in parallel.
The algorithm is exact and non-iterative possessing many favorable features over the acceleration based
counterparts [3], [5].
Sample open- (Fig. 1(a)) and closed-loop (1(b)) test cases indicate excellent constraint satisfaction at the
position and velocity level as well as marginal energy drift without any additional form of the constraint
stabilization techniques involved in the solution process. These results are comparatively set against the
solution collected from the more standard acceleration based formulations, MSC.ADAMS commercial
software, and the results taken from real-life physical experiment [6] for open-loop chain. Some sample
numerical results for the closed-loop pentagonal system are presented in Fig. 2(a), and 2(b)
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(a) Open-loop multibody system (b) Closed-loop multibody system

Figure 1: Sample multibody test cases: (a) open-loop system possessing 229 bodies falling under gravity
forces, (b) a representative closed-loop system
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Figure 2: Performance of the algorithm: (a) Energy drift for the closed-loop system, (b) Constraints
violation errors for the closed-loop chain
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