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Abstract
Recently, the authors have presented a library of generic elements formulated in the special Euclidean
group SE(3) formalism for the numerical simulation of flexible multibody systems. This library includes
an implicit time integration method [1], a rigid body and kinematic joints [2], a geometrically exact
flexible beam [3, 4], a geometrically exact flexible shell [5] and a geometrically exact super-element [6].
The geometric description of the elements is based on the representation of frame transformations as
4×4 homogeneous transformation matrices

H =

[
R x

01×3 1

]
(1)

where x is a 3 × 1 vector and R is a 3 × 3 rotation matrix whose meaning is related to the element
kinematics. For instance, for a beam, x accounts for the position of the neutral axis and R for the
orientation of the cross-sections whereas, for a kinematic joint, x accounts for the relative displacements
and R for the relative rotations in the joint.
The proposed framework exhibits reduced non-linearities compared to classical formulations for two
reasons

• The equations of motion are expressed, both at position and rotation level, in local frames. Ac-
cordingly, the numerical expressions are invariant with respect to superimposed rigid body trans-
formations. As a consequence, the tangent matrices and the constraint gradient are insensitive to
large amplitude motions and depend on local transformations only, i.e. deformations and relative
motions.

• The equations of motion, which take the form of second order differential-algebraic equations on a
Lie group, are solved without introducing a global parametrization of the motion, and in particular
of the rotation.

Several important properties also appear as a consequence of the formalism. For instance, the represen-
tation of large rotations is naturally singularity-free, the flexible elements are naturally locking-free and
the initially curvature of flexible elements is trivially accounted for at any additional costs.
In this work, computational strategies taking advantages of these convenient numerical properties are
presented and several applications in flexible multibody systems are considered.
As an example of the importance of the reduction of non-linearites, the 45◦-bend (Fig. 1a) presented in
[7] and modelled with flexible beam elements can be solved in one load step using the material part of
tangent stiffness matrix only.
In the case of small deformations, most parts of the iteration matrix used in the implicit integration
method do not have to be updated thanks to the invariance with respect to superimposed rigid body
transformation, which leads to a significant reduction in computational time. Indeed, both the evaluation
and the inversion of these parts can be done once for an entire simulation. This feature is applied to the
analysis of the dynamic behaviour of a tape-spring (see representation in Fig. 1b) modelled with flexible
shell elements and to the shape-optimization of a flexible robot.
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(a) 45◦-bend modelled with geometrically exact
flexible beam elements.

(b) Tape-spring modelled with geometrically exact
flexible shell elements.

Figure 1: Examples of applications considered in this work.
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