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Abstract
Historically, the optimization of mechanisms started with the selection of several configurations where-
upon structural optimization was perform based on representative loading conditions coming from the
designer experience for each posture [8]. This approach is doubtful since a few configurations can hardly
represent the overall motion and the optimal design entirely depends on the designer’s choices.
With the evolution of multibody system (MBS) analysis, Bruns and Tortorelli [4] proposed an approach
combining rigid MBS analysis and optimization techniques to design optimal components. The opti-
mization procedure was performed with load cases evaluated during the MBS analysis. They illustrated
their method on the design of a slider-crank mechanism loaded with the maximum tensile force calculated
during the simulation.
Considering the time-dependent loading conditions coming from the MBS analysis, the optimization
problem is rather complex and a lot of research has been conducted to remove this time dependency. For
instance, Oral and Kemal Ider [7] investigated the representation of the constraints either by the most
critical constraint or summarized with a Kresselmeier-Steinhauser function. An important breakthrough
has been made by Kang, Park and Arora [6] who proposed a method to define Equivalent Static Load
(ESL) to optimize flexible mechanisms. For each time step and for each component to design, they de-
fine an ESL which produces the same displacement field as the one generated by the dynamic load at
the considered time step. However, even if the concept is totally general, it has been developed for MBS
based on a floating frame formalism. This formalism separates the elastic coordinates from the coor-
dinates describing the global motion of the bodies which enables to define the ESL for each optimized
component by simply isolating some parts of the equations of motion. Indeed, this formalism gives the
component deformation with respect to its material (body-attached) frame whereupon the ESL definition
is unambiguous.
In the last years, finite element analysis and MBS simulation have been merged into a unified nonlinear
finite element approach which can account for the full flexibility of the different components and enables
the analysis of mechanism deformation undergoing large and fast joint motions [5]. Applying the ESL
method to MBS modeled by the nonlinear finite element method is not straightforward since the decou-
pling characteristics given by the floating frame formalism are not present. To recreate artificially these
characteristics, we propose to introduce a post-processing step to define the ESL without perturbing the
analysis itself [9].
In this research, we investigate the definition of ESL for flexible MBS formulated on a Lie group. The
Lie group theory offers several advantages for the finite element analysis of systems with large rotations
variables [1, 2]. Firstly, the equations of motion are derived and solved directly on the nonlinear manifold,
without an explicit parameterization of the rotation variables, which leads to important simplifications
in the formulations and algorithms. Secondly, displacements and rotations are represented as increments
with respect to the previous configuration, and those increments can be expressed in the material frame.
Therefore, geometric nonlinearities are automatically filtered from the relationship between incremental
displacements and elastic forces, which strongly reduces the fluctuations of the iteration matrix during
the simulation [3].
In this work, we first present the evaluation of ESL for a MBS formulated on a Lie group. As men-
tioned previously, the definition of material frames is embedded in the Lie group formalism wherein
component strain is computed. Thus, ESL can be properly defined. Then, a comparative study of three
optimization methods is presented. We compare the optimization method considering the time dependent
constraint, the method considering the ESL using a “classical" nonlinear finite element formalism and



the one considering the ESL using a Lie group finite element formalism. The study is performed on the
mass minimization of a 2-dof robot subjected to a tracking trajectory constraint inspired from Ref. [6].
Figure 1 illustrates the kinematic model of the robot.
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Figure 1: Kinematic model of the 2-dof robot.
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