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Abstract
Mechatronics design now requires a more holistic approach than ever. This is due to the fact that com-
ponents are becoming more intelligent and provide much more functionality. The usual approach in
engineering is to design the mechanical components, electrical components and software seperately and
then assembled them together to create a mechatronics system. For the design of complex industrial prod-
ucts nowadays, this sequential approach causes problems, given the need to optimize the system-level
product performance and the difficulties to do so in a process that is focused on the design of individual
components and functions. This can be resolved by adopting a systems design approach, in which all
components and their controllers are represented within a system model that can be optimized.
In this paper, we concentrate on the design of controllers. Though many ways exist to design controllers,
MPC control[1] has been found to be very versatile. It has the advantages of being able to systematically
include constraints and/or limits on the system.
In MPC-based controller development and validation, models are used not only as plant models, but also
inside the controllers to define the control strategy. A prototype implementation has been made that links
an MPC process block into LMS Imagine.Lab AMESim. With MPC in the AMEsim workflow, controls
engineers can follow a systematic streamlined procedure to implement a model-based control strategy
for multi-variable, constrained mechatronic systems, dealing with high complexity on an industrial ap-
plication size. The value of this approach has been demonstrated for linear time invariant systems [3].
Towards more realistic representation of the engineering design practice, a next step worked out in this
paper to address the compensation of unknown external disturbances that act on the system. This is a
known pain in the controls engineering design practice. For example on a vehicle, irregular road profile
and wind gusts impact the trajectory to a certain extent, and the controller must operate well while not
being affected by such disturbances.
MPC control is basically an optimization algorithm which at every time step calculates the input value
that will steer the states of the system to the desired value by minimizing some cost function.
A linear system can be described in state space form as:

x(k+1) = Ax(k)+Bu(k) (1)

y(k) =Cx(k)

where x(k) are the states, A is the state transition matrix, B is the input matrix, u(k) is the input, y are
the measurement and C is the measurement matrix. Then an MPC controller solves a finite time optimal
control to find a set of inputs U = [u(1),u(2)....u(N)] to drive the system optimally to the desired states
by minimizing a cost function usually given by

J(x(0),u) =
N−1

∑
k=0

x′(k)Qx(k)+u′(k)Ru(k)+ x′(N)Px(N) (2)

where Q,P and R are weights matrices which assigns relative importance to the states and inputs. At
each time step, the controller calculates U and then only the first input u(1) is applied to the system.
Usually for any system, we cannot measure all its states (x). Only a subset of these states (y) can be
measured due to various reasons. Either the states might be inaccessible or the cost incurred to measure
them might be prohibitive. In such cases, an observer is useful. Its role is to estimate the unavailable
states using the measured values. In our methodology we therefore also include an observer. As for



controllers, many types of observers exist. Two of the most common ones are the Luenberger observer
and the Kalman Filter[4]. Figure 1 shows the block diagram of a system together with a Kalman Filter
and an MPC controller.
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Figure 1: System (enclosed within dashed rectangle) with Kalman Filter (observer) and MPC controller.
The measurements (ym) are fed to the Kalman Filter which estimates the states/distubances (x̂, ŵo, ŵi)
which is fed to the MPC controller.

In addition to estimating the states, observers can also be used to estimate the disturbance entering the
system. Typically, in MPC control to achieve offset free tracking, the ability to estimate the disturbances[2]
is crucial. One of the main problems of disturbance estimation in MPC control is the need for a good
disturbance model. Usually, given only the model of a system, it is not obvious where and how distur-
bances affect the system especially if the system contains integrators. This can be partially solved in
AMESim which uses component-level modeling (resistors, inductors, masses, springs etc...) to extract
the disturbance model.
In this paper we explain the process adopted to integrate the model based control design approach
sketched above in the general purpose multi-physics modeling environment of AMESim. This method-
ology is further enlightened by the realization of two demonstration applications. The first one involves
a single rotating inertia attached to DC motor and where we control the angular position subjected to
an unknown disturbance. The second realization aims at showcase the applicability of modern control
techniques in automotive domain by employing them for the design of an active suspension system. The
plant reproduces the kinematic and compliance behavior of a single automotive suspension undergoing
the vertical (semi-)random excitation of a rough road profile. A simplified representation, capturing the
gross dynamic characteristics of the plant, is hence adopted for the definition of the control and state
estimation scheme depicted above.
Conclusions are finally drawn in the last paragraph of the paper, highlighting the benefits of an integrated
design tool, which grants the possibility to tackle the nowadays pressing needs of mechatronic systems
design.
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