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Abstract
In flexible multibody systems, many components are approximated as shells. More often that not, clas-
sical shell theories, such as Kirchhoff or Reissner-Mindlin shell theory, form the basis of the analytical
development for shell dynamics. The advantage of this approach is that it leads to a simple kinematic
representation of the problem: the shell’s normal material line is assumed to remain straight and its dis-
placement field is fully defined by three displacement and two rotation components. While such approach
is capable of capturing the kinetic energy of the system accurately, it cannot represent the strain energy
adequately. For instance, it is well known from three-dimensional elasticity theory that the normal mate-
rial line will warp under load for laminated composite shell, leading to three-dimensional deformations
that generate complex stress states. To overcome this problem, several high-order, refined plate and shell
theories [1, 2, 3] have been proposed. While these approaches work well for some cases, they typically
lead to inefficient formulation because they introduce numerous additional variables.
In this paper, a semi-discretization of the general equations of three-dimensional nonlinear elasticity is
performed, defining the “local model.” The equations relating the stress resultants, the sectional defor-
mations, and the warping field for the normal material line are derived from a linear combination of the
equations of the local model. These equations define the relationship between the stress resultants the
sectional deformations in an implicit manner, and hence, define the “global model.” A set of power series
solutions are found for the combined equations of local and global models. They are obtained through a
recursive solution of the combined equations.
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Figure 1: A cylindrical shell under pressure.

Based on these solutions, the three-dimensional nonlin-
ear elasticity equations of shell-like structures can be
reduced to the nonlinear, two-dimensional, geometri-
cally exact shell equations, and the three-dimensional
stress field can recovered from the two-dimensional
shell solutions. In the reduction process, a 9×9 sec-
tional stiffness matrix is determined, which takes into
account the warping effects due to material heterogene-
ity. In the recovery process, three-dimensional stress
field at any point in the shell can be recovered from the
two-dimensional shell solution. The proposed method
is valid for anisotropic shells with arbitrarily complex,
through-the-thickness lay-up configurations.
To illustrate the proposed approach, a composite cylin-
drical shell under bending is investigated. Figure 1
shows the configuration of the problem. The shell is
simply supported along its two edges at θ = 0 and π/3,
and is subjected to the normal traction q(θ) = p0/2sin(3θ) along the normal ēn direction, over both
lower and upper surfaces. The outer, mean, and inner radii of the shell are denoted Ro, Rm, and Ri,
respectively. The shell is of thickness h = Rmϕ/4, but of infinite length along unit vector ēz = ēn × ēθ .
The through-the-thickness lay-up consists of 4 plies of identical material, each of thickness, tp = h/4.
The material has the following stiffness properties: the longitudinal, transverse, and shear moduli are



EL = 25, ET = 1, GLT = 0.5, and GT T = 0.2 Msi, respectively; the Poisson’s ratios are νLT = 0.25 and
νT N = 0.25. For this problem, analytical solutions were obtained by Pagano [4]. The following lay-up is
considered: [30◦,−30◦,−30◦,30◦]. The lay-ups defined in fig. 1 start with the bottom ply and end with
the top ply; 0◦ fibers are aligned with unit vector ēz and a positive ply angle indicates a right-hand fiber
rotation about unit vector ēn.
In this example, a single, four-noded one-dimensional element was used to model each ply. In the stress
recovery process, quadratic expansion of external loads and stress resultants are investigated. Exact stress
resultants and their derivatives are obtained by integrating the three-dimensional stress along the shell’s
thickness. Figures 2, 3, 4, and 5 show the distribution of non-dimensional hoop, axial, normal, and shear
stress components at the mid-span of the shell, respectively. The proposed solutions of stress components
are in excellent agreement with the analytical solutions.
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Figure 2: Distribution of non-dimensional hoop
stress component, σθθ/p0, through the shell’s
thickness. Exact solution: dashed-dotted line;
present solution: solid line.
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Figure 3: Distribution of non-dimensional ax-
ial stress component, σzz/p0, through the shell’s
thickness. Exact solution: dashed-dotted line;
present solution: solid line.
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Figure 4: Distribution of non-dimensional nor-
mal stress component, σnn/p0, through the shell’s
thickness). Exact solution: dashed-dotted line;
present solution: solid line.
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Figure 5: Distribution of non-dimensional shear
stress component, σnθ/p0, through the shell’s
thickness. Exact solution: dashed-dotted line;
present solution: solid line.
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