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Abstract
In musculoskeletal simulation, musculotendon paths are commonly modeled as locally length-minimizing
strings between muscle origin and insertion. An accurate computation of these paths, their length and
their rate of length change is essential to the prediction ofmuscle moment arms, muscle forces, and the
resulting joint loads. A single muscle typically wraps around multiple complex obstacles, yet state-of-
the-art muscle wrapping methods are either limited to analytical results for a pair of simple surfaces [1],
or they are computationally expensive as, e.g., they use optimization algorithms [2]. Here we present a
method that allows for both the fast and accurate computation of a musculotendon’s shortest path across
an arbitrary number of general smooth wrapping surfaces. The method uses a root-finding algorithm with
an explicit Jacobian and computes high-precision solutions for path length and rate of length change, al-
lows for wrapping over biologically accurate surfaces, andis capable of simulating muscle paths over
hundreds of surfaces in real-time.
Consider the shortest path between two points that wraps around an ordered set ofn obstacle surfaces
Si. Since the path length is minimal, the total path can be regarded as a concatenation ofn+1 straight-
line segments that connect collinearly ton local surface geodesicsγ i. The collinearity conditions at
the transitions between geodesics and adjacent straight straight lines are used to formulate a nonlinear
constraint equation for the path errorε ∈ R

4n, whose root defines the shortest path [3]

ε(q) = 0, q =
[

q1 . . . qi . . . qn ]

, (1)

whereq are the parameters defining the geodesics. Here, each geodesic is naturally parameterized by
its starting point, direction, and length. This parameterization yieldsq ∈ R

5n on parametric surfaces
and q ∈ R

7n on implicit surfaces. In both cases, Eqn. 1 has more unknownsthan equations. Hence,
a direct gradient-based solution of Eqn. 1 would not only require adding more constraints, but also
make the solution approach dependent on the surface representation. The approach to solving Eqn. 1
presented here consists in introducing a minimal set of fourindependent natural geodesic variations and
computing the gradient ofε with respect to these variations explicitly. We introduce the following four
natural variations per geodesici: (1) the infinitesimal displacement dsi

P of the geodesic’s start pointPi in
tangential direction; (2) the infinitesimal displacement dβ i

P of Pi in binormal direction; the infinitesimal
clockwise rotation dθ i of the geodesic’s initial direction; and (4) the infinitesimal length increment dℓi of
the geodesic’s length for a fixed pointPi. Let dξ i denote the four variations of geodesicγ i, then it holds
for the global path-error Jacobian

J =
∂ε
∂ξ

∈R
4n×4n , dξ =

[

dξ 1 . . . dξ i . . . dξ n
]

∈ R
4n .



Stating the path-error Jacobian explicitly requires information about how geodesics displace when the
initial conditions are varied by dξ . While it is straight-forward to compute the geodesic variations ac-
cording to dsi

P and dℓi, the computation of the geodesic variations according to dβ i
P and dθ i (Fig. 1)

requires solving two scalar Jacobi equations, i.e., secondorder differential equations, along the geodesic.
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Figure 1: Left: An infinitesimal displacement dβ i
P of the geodesic’s start pointPi in binormal direction

causes a binormal displacement dβ i
Q of the end pointQi. Right: Likewise, an infinitesimal clockwise ro-

tation dθ i of the geodesic’s initial direction causes a binormal displacement dβ i
Q. Here,t i is the geodesic’s

tangent,N i is the surface’s normal, andBi = t i
×N i is the respective binormal.

The explicit path-error JacobianJ allows for the efficient computation of finite parameter corrections
∆ξ = −Jε which can be mapped back to finite corrections∆q of the geodesic parameters.J has band
structure due to the local dependency of the path error on surfaceSi from the geodesicsγ i−1, γ i, andγi+1.
Therefore, the method’s computational costs grow linearlywith the number of wrapping surfaces when
using a band-matrix routine to solve for the geodesic corrections.
We applied our method in a dynamic simulation (Fig. 2a) in which a single muscle path wraps around
four (nonsimple) surfaces: a cylinder, a torus, a parametric surface patch fitted to a human ribcage, and
an elliptic torus. At one end, a freely moving point mass is attached to the muscle. With the proposed
method, the exact path length and the exact rate of length change can be computed at any time step.
We also evaluated the computational costs by wrapping a single muscle path over a variable number of
sinusoidally (frequency 0.25rad/s) moving cylinders (Fig. 2b) using a desktop computer with an Intel
i7, 3.5GHz. For 100, 500, and 1000 cylinders, the real-time factors were 0.12, 0.62 (both faster than
real-time), and 1.34 (slower than real-time), respectively.

a b

Figure 2: Wrapping over nonsimple surfaces (a) and over a variable number of cylinders (b)
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