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Parameter identification for a scaled railroad vehicle
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Abstract
Parameter identification of a railroad vehicle is very important to have a precise vehicle model. A first
step in this parameter identification can be to get information concerning suspension properties. This
information can be obtained from the eigenvalue analysis incomputer simulations and from modal tes-
ting in a real vehicle. Measurement of the model’s vibrationproperties will be useful to compare them
with corresponding data produced by the theoretical model.The test will provide accurate estimation of
dynamic properties, as natural frequencies, modal dampingand description of the mode shapes [1].
The aim of this investigation is to study the effect that the locomotive traction system has on the eigen-
behaviour of a railroad vehicle. The eigenbehaviour of the railroad scaled vehicle shown in Figure 1 is
analyzed computational and experimentally, and results are compared. In order to get information about
the primary suspension the basic modes of the bogie frame studied are the associated to longitudinal
oscillation, lateral oscillation, bouncing, rolling, pitching and yawing.
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Figura 1: a)Scaled railroad vehicle; b)Traction motor

The nonlinear equations of motion of the vehicle-track systems, modelled as a multibody system, can take
the form of differential-algebraic equations (DAE) if written in terms of the complete set of dependent
coordinate. The DAE equations are given by:

M(q)q̈+CT
q (q, t)λλλ = Qv(q, q̇)+Qapp(q, q̇)

C(q, t) = 0
(1)

whereM is the mass matrix,C is the constraint vector,Cq is the jacobian matrix of the constraint
equations,λλλ is the vector of Lagrange multipliers,Qv is the generalized quadratic-velocity inertia forces
andQapp is the vector of applied forces that includes the bodies weight and the tangential wheel-rail
contact forces (creep). VectorQapp contains the normal wheel-rail contact forces if an elasticmethod is
used while these forces are included as reaction forces in the termCT

q λλλ if the constraint contact method
is used [2]. The eigenvalue analysis follows three steps:

1. Calculation of steady motion.

2. Linearization of the equations of motion.

3. Eigenvalue calculation.

The consideration of a motor running in the system changes the mass matrixM and changes the vector
of forces and moments appliedQapp. The effects of theses changes in the eigenbehaviour of the sys-
tem is studied in this work. Results obtained, following thethree steps previously mentioned for the
eigenanalysis, are validated with the results obtained experimentally from modal testing.



Modal testing is very useful for verifying the theoretical model and for the prediction of the dynamic
effect when considering the running motor. Modal testing includes data acquisition and its subsequent
analysis. Figure 2 shows the moving hammer that excites the system by impacts and the three accelero-
meters that measure the response, inX , Y andZ direction. Different experiments, in time and frequency
domain, have been done to the following system:

Vehicle without motor.

Vehicle with the motor running with 0, 25, 50, 75 and 100% of the maximum velocity.

Figura 2: Modal analysis.

The data acquisition in frequency domain of the impulse and the response of the accelerometers gives the
FFT and the FRF (see Figure 3). Different methods (SDOF or MDOF) allow the analysis of these data
and the calculation of the dynamic properties of the system.

Figura 3: FRF (accelerometerZ and hammer impacting inZ direction)

As mentioned above, in addition to the experiments in frequency domain, tests in time domain have
been done. The logarithmic decrement method allows to compared the real part (ξ ωn) an the imaginary
part (ωd) of the eigenvalues obtained computationally, whereξ is the damping ratio,ωn is the natural
frecuency, andωd is the damped natural frecuency.
The calculation of the eigenvalues obtained with the different methods mentioned, computational and ex-
perimentally, would allow to validate the model of the railroad vehicle or improve the primary suspension
parameters used, in addition to exhibit the influence of the locomotive traction motor in the dynamics of
the vehicle.
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